Connect with us
MARE BALTICUM Gaming & TECH Summit 2024

Artificial Intelligence

Unmanned Aerial Vehicle (UAV) Market Worth $21.8 billion by 2027- Pre and Post COVID-19 Market Analysis Report by Meticulous Research®

Published

on

London, June 11, 2020 (GLOBE NEWSWIRE) — According to a new market research report titled, Unmanned Aerial Vehicle (UAV) Market by Component (Hardware, Software), Class (Mini UAVs, Micro UAVs), End-User (Military, Commercial, Agriculture), Type (Fixed Wing, Rotary-Wing UAVs), Capacity, and Mode of Operation– Global Forecast to 2027”, the unmanned aerial vehicle (UAV) market is expected to grow at a CAGR of 14.1% from 2020 to 2027 to reach $21.8 billion by 2027. Also, in terms of volume, the market is expected to grow at a CAGR of 16.2% from 2020 to 2027 to reach 13.2 million units by 2027.Download Free Sample Report Now @ https://www.meticulousresearch.com/download-sample-report/cp_id=5086Unmanned Aerial Vehicles (UAVs), or drones are aircrafts which can be operated remotely by a pilot or by pre-programmed schedules or automation systems, allowing it to fly autonomously. A wide range of industries and organizations, including military, government, industrial and recreational users, deploy this technology across the globe. As the drone technology advances, these aircrafts are expected to become more popular and affordable. Rising adoption of UAVs in civil and commercial application, increasing deployment of UAV in border patrolling and combating terrorism, and regulations by the federal aviation administration (FAA) to permit the use of UAVs in several industries are the key factors driving the growth of the unmanned aerial vehicle (UAV) market. However, the restrictions imposed on the commercial use of UAVs in various countries are anticipated to obstruct the growth of this market to some extent.Impact of COVID-19 on the Unmanned Aerial Vehicle (UAV) MarketUAV manufacturers worldwide are struggling to meet production deadlines as the coronavirus continues to impact Chinese electronic component manufacturing industries. A growing number of component suppliers worldwide are also experiencing slowdowns or shutdowns in response to the COVID-19, which affects the availability of sub-components in a snowball effect.China is the home for major consumer electronics manufacturers. After the outbreak of COVID-19, many technology sectors are facing new challenges in the supply chain. It has been almost two decades since the SARS virus spread across China, affecting thousands of people in the country and heavily impacting the global economy. The Chinese economy accounted for only 4% of the world’s GDP back in 2003; however, it accounts for around 16% in 2020. China has made the world heavily dependent on its manufacturing capabilities since 2003. However, after the WHO’s official announcement of the coronavirus outbreak in January 2020, exports from China have reduced significantly. As a result, UAV industries across the world that are dependent on imports of battery, gimbal, camera, or a small piece of plastic manufactured from China have suffered severe setbacks. For instance, the U.S.-based Skydio assembles UAVs in the U.S., but the company is suffering from the supply-chain disruption caused by the slowdown in manufacturing of the parts.Further, as per the press release of DJI (the largest UAV manufacturer in the world), DJI is working to limit the impact on customers but says that shortages may occur. Also, disruptions in the supply chain due to COVID-19 have slowed down the shipments of UAVs to major markets across the globe. COVID-19 Impact Assessment by Meticulous Research®The COVID-19 impact on unmanned aerial vehicle market is analyzed on the basis of 3 scenarios, namely severe impact, slow recovery, and fast recovery growth. The severe impact situation considers a sharp decline in market revenues during 2020 and 2021, followed by a period of gradual market growth during the forecast period.The slow recovery scenario considers a minor dip in terms of market revenue during 2020 and 2021, while the market recovers at a slow to moderate pace 2022 onwards.Under the fast recovery scenario, market revenues during 2020 and 2021 are somewhat affected, followed by a consolidation of market revenues during the subsequent years of the forecast periodSpeak to our Analysts to Understand the Impact of COVID-19 on Your Business: https://www.meticulousresearch.com/speak-to-analyst/cp_id=5086Meticulous Research® predicted that the UAV market growth would be somewhat staggered during 2020, owing to a limited military spending by countries, globally. Several of the defense contracts that were slated to commercialize in 2020 have been put on hold due to the pandemic, forcing countries to focus their spending on healthcare sector. Meticulous Research® estimates a major dip in terms of revenue generated from military contracts. A bulk of revenue generated in military segment would come from renewals, and refurbishment activities. An optimistic opinion cites the recovery from COVID-19 by August which would offer vendors in the market with new revenue generation opportunities.However, the decline from military segment is in tandem to the growth and adoption of UAVs in non-military applications. The commercial and civil applications would continue to generate new revenue prospects for the global unmanned aerial vehicles market amidst the COVID-19 epidemic. Meticulous Research® estimates that the global unmanned aerial vehicle market revenue and demand will reflect fast recovery and the market would take less time to get back on track for a moderate pace growth. The bigger picture that has emerged amidst the coronavirus pandemic highlights the rising importance and usability of UAVs/drones in conducting automated operations, thereby safeguarding human safety in critical situations like these.The overall unmanned aerial vehicle market study presents historical market data in terms of value and volume (2018 and 2019), estimated current data (2020), and forecasts for 2027. The market is segmented on the basis of component (UAV hardware, UAV software); class (small UAVs, strategic & tactical UAVs, special-purpose UAVs); type (fixed-wing UAVs, fixed-wing VTOL UAVs, rotary-wing UAVs); capacity (<25 Kilograms,25-170 Kilograms, >170 Kilograms); mode of operation (remotely operated UAVs, semi-autonomous UAVs, fully autonomous UAVs); and end user (military, commercial, law enforcement, agriculture, energy & power, construction & mining, media & entertainment, wildlife & forestry, insurance). The study also evaluates industry competitors and analyses the market at a country level.Based on component, the UAV hardware segment is estimated to emerge as the largest shareholder during the forecast period in the overall unmanned aerial vehicle market in 2020. The large share of this segment is primarily accounted to the rising need for replacement, upgradation, and modification of drone hardware components to improve drone lifespan and performance as well as to gain competitive advantage. In addition, several UAV manufacturers are coming up with lighter and robust hardware structures to make them function under extreme climatic conditions, which further augments the growth of this segment. However, the advancements in drone software technology and increasing demand for better data analysis will result in the software segment emerging as the fastest growing segment during the forecast period.Quick Buy – UAV Market Research Report: https://www.meticulousresearch.com/buy_now.php?pformat=387&vformat=1148Geographically, in 2020, the North America region is estimated to account for the largest share of the global unmanned aerial vehicle market, followed by Asia Pacific, Europe, Latin America, and the Middle East and Africa. The large share of the North America region is attributed to the presence of major UAV manufacturing companies and their focus on developing advanced UAV technology, along with increasing funding by the government on UAVs for border surveillance and maritime activities. In addition, favorable government initiatives regarding the advancement in drone technology coupled with the increasing demand for drone acquired data from businesses will further drive North America UAV market growth. Moreover, the U.S. Federal Aviation Administration (FAA) has released new regulations that provide more concise and clear guidelines on the legal and safe operation of UAVs in commercial spaces. These rules and regulations are expected to reduce entry barriers and increase the adoption of UAVs in the region. On the other hand, the Asia Pacific region is projected to grow at the fastest CAGR of 16.7% during the forecast period. The high growth rate is attributed to the supporting government initiatives across the region and investments by major UAV companies.However, Asia-Pacific region is expected to witness rapid growth during the forecast period, driven by the factors such as increasing adoption of automation and advanced technologies across a wide range of industries such as China and Japan to counter the rising labor costs; favorable government initiatives across the region; and investments by major UAV companies. For instance, in 2018, Airbus (a European multinational aerospace corporation) launched the Airbus Aerial commercial drone services in the Asia-Pacific region, with Singapore as the headquarter. Further, the Chinese government is also taking initiatives for development of UAV across the country which is expected to support the growth UAV market in the region. For instance, in July 2017, the State Council of China released a “New Generation Artificial Intelligence (AI) Development Plan” with the goal of guiding China to become a global leader in AI by 2030. AI technology development is at the helm of this initiative. Under this strategy, the UAV is one of the focus sectors. This national strategy guideline calls for the production of UAVs and autonomous vehicles for consumers and industrial use.The report also includes extensive assessment of the key strategic developments adopted by the leading market participants in the industry over the past 4-5 years. The unmanned aerial vehicle market has witnessed number of products launches in recent years. For instance, in November 2019, Elbit Systems launched MAGNI, a fully autonomous and robust multi-rotor Vertical Take-Off and Landing (VTOL) Unmanned Aerial System (UAS). This new MAGNI is a compact and lightweight (2.5 kg) and features rapid deployment and launch (in less than 1 minute) of any combat vehicle, making it an effective tool for intelligence gathering. Similarly, in October 2019, DJI introduced Mavic Mini, an ultra-light folding drone that is intended to serve as the FlyCam for daily use. This new Mavic Mini Weighing a meagre 249 grams is lightweight, easy to operate, optimized for safety, and ideal for recreational or educational purpose.The global unmanned aerial vehicle market is consolidated and dominated by few major players, namely Elbit Systems Ltd. (Israel), Northrop Grumman Corporation (U.S.), General Atomics (U.S.), AeroVironment, Inc. (U.S.), Lockheed Martin Corporation (U.S.), Israel Aerospace Industries Ltd. (Israel), Parrot S.A.(France), Microdrones GmbH (Germany), PrecisionHawk Inc (U.S.), SZ DJI Technology Co., Ltd (China), 3D Robotics (U.S.), Textron Inc. (U.S.), Boeing (U.S.), Aeronautics (U.S), Saab AB (Sweden), BAE Systems plc (U.K.), Ehang (china), Raytheon Company (U.S.), Turkish Aerospace Industries (Turkey), and Yuneec International (China) among others.To gain more insights into the market with a detailed table of content and figures, click here: https://www.meticulousresearch.com/product/unmanned-aerial-vehicle-UAV-market-5086/

GlobeNewswire is one of the world's largest newswire distribution networks, specializing in the delivery of corporate press releases financial disclosures and multimedia content to the media, investment community, individual investors and the general public.

Artificial Intelligence

IBM, Government of Canada, Government of Quebec Sign Agreements to Strengthen Canada’s Semiconductor Industry

Published

on

ibm,-government-of-canada,-government-of-quebec-sign-agreements-to-strengthen-canada’s-semiconductor-industry

Up to $187M CAD to be invested to progress expansion of chip packaging capacity and capabilities and to strengthen R&D at IBM Canada’s Bromont plant
BROMONT, QC, April 26, 2024 /PRNewswire/ — IBM (NYSE: IBM), the Government of Canada, and the Government of Quebec today announced agreements that will strengthen Canada’s semiconductor industry, and further develop the assembly, testing and packaging (ATP) capabilities for semiconductor modules to be used across a wide range of applications including telecommunications, high performance computing, automotive, aerospace & defence, computer networks, and generative AI, at IBM Canada’s plant in Bromont, Quebec. The agreements reflect a combined investment valued at approximately $187M CAD.

“Today’s announcement is a massive win for Canada and our dynamic tech sector. It will create high-paying jobs, invest in innovation, strengthen supply chains, and help make sure the most advanced technologies are Canadian-made. Semiconductors power the world, and we’re putting Canada at the forefront of that opportunity,” said the Right Honourable Justin Trudeau, Prime Minister of Canada
In addition to the advancement of packaging capabilities, IBM will be conducting R&D to develop methods for scalable manufacturing and other advanced assembly processes to support the packaging of different chip technologies, to further Canada’s role in the North American semiconductor supply chain and expand and anchor Canada’s capabilities in advanced packaging.
The agreements also allow for collaborations with small and medium-sized Canadian-based enterprises with the intent of fostering the development of a semiconductor ecosystem, now and into the future.
“IBM has long been a leader in semiconductor research and development, pioneering breakthroughs to meet tomorrow’s challenges. With the demand for compute surging in the age of AI, advanced packaging and chiplet technology is becoming critical for the acceleration of AI workloads,” said Darío Gil, IBM Senior Vice President and Director of Research. “As one of the largest chip assembly and testing facilities in North America, IBM’s Bromont facility will play a central role in this future. We are proud to be working with the governments of Canada and Quebec toward those goals and to build a stronger and more balanced semiconductor ecosystem in North America and beyond.”
IBM Canada’s Bromont plant is one of North America’s largest chip assembly and testing facilities, having operated in the region for 52 years. Today, the facility transforms advanced semiconductor components into state-of-the-art microelectronic solutions, playing a key role in IBM’s semiconductor R&D leadership alongside IBM’s facilities at the Albany NanoTech Complex and throughout New York’s Hudson Valley. These agreements will help to further establish a corridor of semiconductor innovation from New York to Bromont. 
“Advanced packaging is a crucial component of the semiconductor industry, and IBM Canada’s Bromont plant has led the world in this process for decades,” said Deb Pimentel, president of IBM Canada. “Building upon IBM’s 107-year legacy of technology innovation and R&D in Canada, the Canadian semiconductor industry will now become even stronger, allowing for robust supply chains and giving Canadians steady access to even more innovative technologies and products. This announcement represents just one more example of IBM’s leadership and commitment to the country’s technology and business landscape.”
Chip packaging, the process of connecting integrated circuits on a chip or circuit board, has become more complex as electronic devices have shrunk and the components of chips themselves get smaller and smaller. IBM announced the world’s first 2 nanometer chip technology in 2021 and, as the semiconductor industry moves towards new methods of chip construction, advances in packaging will grow in importance. 
“Semiconductors are part of our everyday life. They are in our phones, our cars, and our appliances. Through this investment, we are supporting Canadian innovators, creating good jobs, and solidifying Canada’s semiconductor industry to build a stronger economy. Canada is set to play a larger role in the global semiconductor industry thanks to projects like the one we are announcing today. Because, when we invest in semiconductor and quantum technologies, we invest in economic security.”  — The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry
“This investment by IBM in Bromont will ensure that Quebec continues to stand out in the field of microelectronics. An increase in production capacity will solidify Quebec’s position in the strategic microelectronics sector in North America.” — The Honourable Pierre Fitzgibbon, Minister of Economy, Innovation and Energy, Minister responsible for Regional Economic Development and Minister responsible for the Metropolis and the Montreal region
About IBMIBM is a leading provider of global hybrid cloud and AI, and consulting expertise. We help clients in more than 175 countries capitalize on insights from their data, streamline business processes, reduce costs and gain the competitive edge in their industries. More than 4,000 government and corporate entities in critical infrastructure areas such as financial services, telecommunications and healthcare rely on IBM’s hybrid cloud platform and Red Hat OpenShift to affect their digital transformations quickly, efficiently and securely. IBM’s breakthrough innovations in semiconductors, AI, quantum computing, industry-specific cloud solutions and consulting deliver open and flexible options to our clients. All of this is backed by IBM’s legendary commitment to trust, transparency, responsibility, inclusivity and service. Visit www.ibm.com for more information. 
Media ContactLorraine BaldwinIBM [email protected] 
Willa HahnIBM [email protected]
Photo – https://mma.prnewswire.com/media/2397908/IBM_Canada_employee_at_the_IBM_Bromont_plant_holding_a_wafer.jpg
Logo – https://mma.prnewswire.com/media/95470/ibm_logo.jpg

View original content:https://www.prnewswire.co.uk/news-releases/ibm-government-of-canada-government-of-quebec-sign-agreements-to-strengthen-canadas-semiconductor-industry-302128212.html

Continue Reading

Artificial Intelligence

HITACHI ACQUIRES MA MICRO AUTOMATION OF GERMANY IN EFFORT TO ACCELERATE GLOBAL EXPANSION OF ROBOTIC SI BUSINESS IN THE MEDICAL AND OTHER FIELDS

Published

on

hitachi-acquires-ma-micro-automation-of-germany-in-effort-to-accelerate-global-expansion-of-robotic-si-business-in-the-medical-and-other-fields

HOLLAND, Mich., April 26, 2024 /PRNewswire/ — Hitachi Ltd. (TSE: 6501, “Hitachi”) has signed a stock purchase agreement on April 26 to acquire all shares of MA micro automation GmbH (“MA micro automation”, headquartered in St. Leon-Rot, Germany) from MAX Management GmbH (a subsidiary of MAX Automation SE). MA micro automation is a leading provider of robotic and automation technology (robotic SI) including high-speed linear handling systems, high-precision assembly lines, and high-speed vision inspection technology for Europe, North America, and Southeast Asia, for EUR 71.5M million. The transaction is expected to close in the second half of 2024, pending completion of the customary regulatory filings. After the acquisition is completed, MA micro automation will join JR Automation Technologies, LLC (“JR Automation”), a market leader in providing advanced automation solutions and digital technologies in the robotic system integration business for North America, Europe, and Southeast Asia as a continued effort to expand the company’s global presence.

MA micro automation is a technology leader for automation solutions within micro-assembly. Through its state-of-the-art proprietary high-speed and high-precision automation know-how, combined with unique optical image inspection capabilities, MA micro automation serves high-growth med-tech automation end-markets, covering the production, assembly, and testing medical and optical components including contact lenses, IVD and diabetes diagnostics consumables, and injection molding for medical use. The company was established in 2003 through a carve-out from Siemens*1 and since 2013 has been part of the MAX Automation group. 
JR Automation is a leading provider of intelligent automated manufacturing technology solutions, serving customers across the globe in a variety of industries including automotive, life sciences, e-mobility, consumer and industrial products. With over 20 locations between North America, Europe, and Southeast Asia, the leading integrator offers nearly 2 million square feet (185,806 sq. m) of available build and engineering floorspace. This acquisition allows JR Automation to further grow and strengthen both the company’s geographical footprint and their continued commitment on expanding support capabilities within the European region and medical market vertical.
“MA micro automation provides engineering, build and support expertise with established capabilities in complex vision applications, high-speed and high-precision automation technologies. When integrated with JR Automation’s uniform global process and digital technologies, this partnership will further enhance our ability to deliver added value and support to all of our customers worldwide and continue to grow our capabilities in the medical market,” says Dave DeGraaf, CEO of JR Automation. “As we integrate this new dimension, impressive talents and abilities of the MA micro automation team we further enhance our ability to serve our customers, creating a more robust and globally balanced offering.”
With this acquisition, Hitachi aims to further enhance its ability to provide a “Total Seamless Solution*2” to connect manufacturer’s factory floors seamlessly and digitally with their front office data, allowing them to achieve total optimization and bringing Industry 4.0 to life. This “Total Seamless Solution” strategy links organizations’ operational activities such as engineering, supply chain, and purchasing to the plant floor and allows for real time, data-driven decision-making that improves the overall business value for customers.
Kazunobu Morita, Vice President and Executive Officer, CEO of Industrial Digital Business Unit, Hitachi, Ltd. says, “We are very pleased to welcome MA micro automation to the Hitachi Group. The team is based in Europe, providing robotic SI to global medical device manufacturing customers with its high technological capabilities and will join forces with JR Automation and Hitachi Automation to strengthen our global competitiveness. Hitachi aims to enhance its ability to provide value to customers and grow alongside them by leveraging its strengths in both OT, IT, including robotic SI, and “Total Seamless Solution” through Lumada*3’s customer co-creation framework.”
Joachim Hardt, CEO MA micro automation GmbH says, “Following the successful establishment and growth of MA micro automation within the attractive automation market for medical technology products, we are now opening a new chapter. Our partnership with Hitachi will not only strengthen our global competitive position, but we will also benefit from joint technological synergies and a global market presence.  We look forward to a synergistic partnership with Hitachi and JR Automation.”
Outline of MA micro automation    
Name
MA micro automation GmbH
Head Office
St. Leon-Rot, Germany
Representative
Joachim Hardt (CEO)
Outline of Business
Automation solutions within micro-assembly
Total no. of Employees:
Approx. 200 (As of April 2024)
Founded
2003
Revenues (2023)
€ 46.5 million
Website

Home


*1
“Siemens” is a registered trademark or trademark of Siemens Trademark GmbH & Co. KG in the U.S. and other countries.
*2
“Total Seamless Solution” is a registered trademark of Hitachi, Ltd. in the U.S. and Japan.
*3
Lumada: A collective term for solutions, services and technologies based on Hitachi’s advanced digital technologies for creating value from customers’ data accelerating digital innovation. https://www.hitachi.com/products/it/lumada/global/en/index.html
About JR AutomationEstablished in 1980, JR Automation is a leading provider of intelligent automated manufacturing technology solutions that solve customers’ key operational and productivity challenges. JR Automation serves customers across the globe in a variety of industries, including automotive, life sciences, aerospace, and more.  
In 2019, JR Automation was acquired by Hitachi, Ltd. In a strategic effort towards offering a seamless connection between the physical and cyber space for industrial manufacturers and distributers worldwide. With this partnership, JR Automation provides customers a unique, single-source solution for complete integration of their physical assets and data information, offering greater speed, flexibility, and efficiencies towards achieving their Industry 4.0 visions. JR Automation employs over 2,000 people at 21 manufacturing facilities in North America, Europe, and Asia.  For more information, please visit www.jrautomation.com.   
About Hitachi, Ltd.Hitachi drives Social Innovation Business, creating a sustainable society through the use of data and technology. We solve customers’ and society’s challenges with Lumada solutions leveraging IT, OT (Operational Technology) and products. Hitachi operates under the 3 business sectors of “Digital Systems & Services” – supporting our customers’ digital transformation; “Green Energy & Mobility” – contributing to a decarbonized society through energy and railway systems, and “Connective Industries” – connecting products through digital technology to provide solutions in various industries. Driven by Digital, Green, and Innovation, we aim for growth through co-creation with our customers. The company’s revenues as 3 sectors for fiscal year 2023 (ended March 31, 2024) totaled 8,564.3 billion yen, with 573 consolidated subsidiaries and approximately 270,000 employees worldwide. For more information on Hitachi, please visit the company’s website at https://www.hitachi.com.
Photo – https://mma.prnewswire.com/media/2398552/CENTAURI_IVD_Platform.jpg Logo – https://mma.prnewswire.com/media/2392427/4673549/JR_Automation_and_Hitachi_Combined_Mark_full_color_Logo.jpg
 

View original content:https://www.prnewswire.co.uk/news-releases/hitachi-acquires-ma-micro-automation-of-germany-in-effort-to-accelerate-global-expansion-of-robotic-si-business-in-the-medical-and-other-fields-302128612.html

Continue Reading

Artificial Intelligence

$10 million Artificial Intelligence Mathematical Olympiad Prize appoints further advisory committee members

Published

on

$10-million-artificial-intelligence-mathematical-olympiad-prize-appoints-further-advisory-committee-members

D. Sculley, Kevin Buzzard, Leo de Moura, Lester Mackey and Peter J. Liu appointed to the advisory committee for the Artificial Intelligence Mathematical Olympiad Prize.
LONDON, April 26, 2024 /PRNewswire/ — XTX Markets’ newly created Artificial Intelligence Mathematical Olympiad Prize (‘AIMO Prize’) is a $10mn challenge fund designed to spur the creation of a publicly shared AI model capable of winning a gold medal in the International Mathematical Olympiad (IMO).

XTX Markets is delighted to announce the appointment of five further advisory committee members. This group brings great expertise in machine learning, including D. Sculley, the CEO of Kaggle; Lester Mackey, a Principal Researcher at Microsoft Research and a Macarthur Fellow; and Peter J. Liu, a research scientist at Google DeepMind.
Prolific mathematicians Kevin Buzzard, who achieved a perfect score in the International Mathematical Olympiad, and Leo De Moura who is the Chief Architect for Lean, the automated reasoning tool, also join the advisory group.
They join the existing advisory committee members Terence Tao and Timothy Gowers, both winners of the Fields Medal, as well as Dan Roberts, Geoff Smith and Po-Shen Loh.
The AIMO Advisory Committee will support the development of the AIMO Prize, including advising on appropriate protocols and technical aspects, and designing the various competitions and prizes.
Simon Coyle, Head of Philanthropy at XTX Markets, commented:
“We are thrilled to complete the AIMO Advisory Committee with the appointments of D., Kevin, Leo, Lester and Peter. Together, they have enormous experience in machine learning and automated reasoning and are already bringing expertise and wisdom to the AIMO Prize. We look forward to announcing the winners of the AIMO’s first Progress Prize soon, and then publicly sharing the AI models to support the open and collaborative development of AI.”
Further information on the AIMO Prize
There will be a grand prize of $5mn for the first publicly shared AI model to enter an AIMO approved competition and perform at a standard equivalent to a gold medal in the IMO. There will also be a series of progress prizes, totalling up to $5mn, for publicly shared AI models that achieve key milestones towards the grand prize.
The first AIMO approved competition opened to participants in April 2024 on the Kaggle competition platform. The first progress prize focuses on problems pitched at junior and high-school level maths competitions. There is a total prize pot of $1.048m for the first progress prize, of which at least $254k will be awarded in July 2024, There will be a presentation of progress held in Bath, England in July 2024, as part of the 65th IMO.
For more information on the AIMO Prize visit: https://aimoprize.com/ or the competition page on Kaggle: https://www.kaggle.com/competitions/ai-mathematical-olympiad-prize/
Advisory Committee member profiles:
D. Sculley
D. is the CEO at Kaggle. Prior to joining Kaggle, he was a director at Google Brain, leading research teams working on robust, responsible, reliable and efficient ML and AI. In his career in ML, he has worked on nearly every aspect of machine learning, and has led both product and research teams including those on some of the most challenging business problems. Some of his well-known work involves ML technical debt, ML education, ML robustness, production-critical ML, and ML for scientific applications such as protein design.
Kevin Buzzard
Kevin a professor of pure mathematics at Imperial College London, specialising in algebraic number theory. As well as his research and teaching, he has a wide range of interests, including being Deputy Head of Pure Mathematics, Co-Director of a CDT and the department’s outreach champion. He is currently focusing on formal proof verification, including being an active participant in the Lean community. From October 2024, he will be leading a project to formalise a 21st century proof of Fermat’s Last Theorem. Before joining Imperial, some 20 years ago, he was a Junior Research Fellow at the University of Cambridge, where he had previously been named ‘Senior Wrangler’ (the highest scoring undergraduate mathematician). He was also a participant in the International Mathematical Olympiad, winning gold with a perfect score in 1987. He has been a visitor at the IAS in Princeton, a visiting lecturer at Harvard, has won several prizes both for research and teaching, and has given lectures all over the world.
Leo de Moura
Leo is a Senior Principal Applied Scientist in the Automated Reasoning Group at AWS. In his spare time, he dedicates himself to serving as the Chief Architect of the Lean FRO, a non-profit organization that he proudly co-founded alongside Sebastian Ullrich. He is also honoured to hold a position on the Board of Directors at the Lean FRO, where he actively contributes to its growth and development. Before joining AWS in 2023, he was a Senior Principal Researcher in the RiSE group at Microsoft Research, where he worked for 17 years starting in 2006. Prior to that, he worked as a Computer Scientist at SRI International. His research areas are automated reasoning, theorem proving, decision procedures, SAT and SMT. He is the main architect of several automated reasoning tools: Lean, Z3, Yices 1.0 and SAL. Leo’s work in automated reasoning has been acknowledged with a series of prestigious awards, including the CAV, Haifa, and Herbrand awards, as well as the Programming Languages Software Award by the ACM. Leo’s work has also been reported in the New York Times and many popular science magazines such as Wired, Quanta, and Nature News.
Lester Mackey
Lester Mackey is a Principal Researcher at Microsoft Research, where he develops machine learning methods, models, and theory for large-scale learning tasks driven by applications from climate forecasting, healthcare, and the social good. Lester moved to Microsoft from Stanford University, where he was an assistant professor of Statistics and, by courtesy, of Computer Science. He earned his PhD in Computer Science and MA in Statistics from UC Berkeley and his BSE in Computer Science from Princeton University. He co-organized the second place team in the Netflix Prize competition for collaborative filtering; won the Prize4Life ALS disease progression prediction challenge; won prizes for temperature and precipitation forecasting in the yearlong real-time Subseasonal Climate Forecast Rodeo; and received best paper, outstanding paper, and best student paper awards from the ACM Conference on Programming Language Design and Implementation, the Conference on Neural Information Processing Systems, and the International Conference on Machine Learning. He is a 2023 MacArthur Fellow, a Fellow of the Institute of Mathematical Statistics, an elected member of the COPSS Leadership Academy, and the recipient of the 2023 Ethel Newbold Prize.
Peter J. Liu
Peter J. Liu is a Research Scientist at Google DeepMind in the San Francisco Bay area, doing machine learning research with a specialisation in language models since 2015 starting in the Google Brain team. He has published and served as area chair in top machine learning and NLP conferences such as ICLR, ICML, NEURIPS, ACL and EMNLP. He also has extensive production experience, including launching the first deep learning model for Gmail Anti-Spam, and using neural network models to detect financial fraud for top banks. He has degrees in Mathematics and Computer Science from the University of Toronto.
About XTX Markets:
XTX Markets is a leading financial technology firm which partners with counterparties, exchanges and e-trading venues globally to provide liquidity in the Equity, FX, Fixed Income and Commodity markets. XTX has over 200 employees based in London, Paris, New York, Mumbai, Yerevan and Singapore. XTX is consistently a top 5 liquidity provider globally in FX (Euromoney 2018-present) and is also the largest European equities (systematic internaliser) liquidity provider (Rosenblatt FY: 2020-2023).
The company’s corporate philanthropy focuses on STEM education and maximum impact giving (alongside an employee matching programme). Since 2017, XTX has donated over £100mn to charities and good causes, establishing it as a major donor in the UK and globally.
In a changing world XTX Markets is at the forefront of making financial markets fairer and more efficient for all.
 

View original content:https://www.prnewswire.co.uk/news-releases/10-million-artificial-intelligence-mathematical-olympiad-prize-appoints-further-advisory-committee-members-302128542.html

Continue Reading

Trending