Connect with us
MARE BALTICUM Gaming & TECH Summit 2024

Artificial Intelligence

Worldwide Driving Simulator Industry to 2026 – Autonomous Vehicle Acts as a Growth Engine for the Market

Published

on

Dublin, Sept. 27, 2021 (GLOBE NEWSWIRE) — The “Driving Simulator Market – Growth, Trends, COVID-19 Impact, and Forecasts (2021 – 2026)” report has been added to ResearchAndMarkets.com’s offering.

The Driving Simulator Market size is valued at USD 1.5 billion in 2020 and it is expected to reach USD 5.8 billion by 2026, rising at a market growth of 8.1% CAGR during the forecast period.

Due to the COVID-19 pandemic outbreak and the subsequent lockdowns (with all the restrictions followed), the driver simulator market witnessed a decline. Like any other industry, the pandemic showed a negative impact on the driving simulator market as well. Major countries with a large market share are negatively impacted by the pandemic, subsequently reducing the installation of driving simulators. However, as the economies slowly return to a state of normalcy, the market is picking up pace and is expected to grow positively during the forecast period.

As technologies in automobiles are improving day by day, there is also the significant need for safety features in them. Most accidents happen due to human errors, lack of driving skills etc. To avoid such situations, driving simulators are best possible way to enhance driver skills in a virtual manner where real-time environment is created artificially. This system helps the driver in managing the situation in a controlled manner. Thus, a driving simulator is more efficient and improves safety to a great extent.

The adoption of driving simulators and analysis technology has experienced an increase in the railways, aviation, marine, defence, and automotive sectors as it helps in testing and analysing the designs of products in a virtual environment. Especially in automobile sector, there is a consistent increase in the demand for advanced safety features in compact and mid-sized automobiles, as most countries are bringing in new laws to improve vehicular safety. Moreover, increasing stringency of safety and environmental regulations has compelled manufacturers and authorities to invest in driving simulators with innovate designs for training.

Simulators are one of the crucial aspects of the development and testing of new vehicles. The simulator’s result helps engineers in making important decisions while building the prototype and testing the vehicle on the track. Additionally, electrification of automotive components, advent of semi-autonomous and autonomous vehicles, and increasing influence of technology companies in the automotive industry are growth factors for the driving simulator market. The automotive industry is heading toward autonomous vehicles. Most of the vehicle manufactures are working on autonomous vehicles technology, which is not possible without simulators, and in the future new players are likely to enter the field of autonomous vehicles, which will drive the market growth in the forecast period. Major automaker companies, technology giants, and specialist start-ups have invested more than USD 50 billion over the past five years, to develop the autonomous vehicle (AV) technology, with 70% of the money coming from other than the automotive industry. At the same time, public authorities see that AVs offer substantial potential economic and social benefits.

Key Market Trends

Autonomous Vehicle Acts as a Growth Engine for Market

Vehicle manufacturers are investing heavily in autonomous car technology and entering partnerships to develop the best autonomous vehicle as autonomous vehicles require an enormous quantity of data collecting and processing. The entire data is shared between IoT-connected cars and is uploaded wirelessly to a cloud system to be analyzed and used for improving automation. For instance,

In March 2021, Volvo Group has signed an agreement with NVIDIA to jointly develop the decision-making system of autonomous commercial vehicles and machines. Utilizing NVIDIA’s end-to-end artificial intelligence platform for training, simulation, and in-vehicle computing, the resulting system will be designed to handle fully autonomous driving on public roads and highways safely.

In January 2021, General Motors announced they have entered a long-term strategic relationship with Microsoft to accelerate the commercialization of self-driving vehicles. The companies will bring together their software and hardware engineering excellence, cloud computing capabilities, manufacturing know-how and partner ecosystem to transform transportation.

In October 2020, Waymo and Daimler announced that they are forming a strategic partnership to deploy fully driverless trucks. Daimler will integrate Waymo’s autonomous driving technology into its fleet of heavy-duty Freightliner Cascadia semi-trailer trucks.

North America is Expected to Lead the Market

North America is led by the United States, which is one of the most technologically superior markets in the world. There is rapid growth for Level 2 and Level 3 autonomous cars in this region, equipped with advanced driver assistance systems, like collision detection, lane departure warning, and adaptive cruise control. The other upper-level autonomous cars are also gaining support from governments and various companies, which are working together on different projects of automated driving systems technology.

Recently, in May 2021, Austin-based National Instruments announced that they have acquired monoDrive, which specializes in signal processing and hi-fi simulation software for autonomous vehicles and ADAS development.

In September 2020, dSPACE introduced High-Fidelity Vehicle Dynamics Simulation on NVIDIA DRIVE Sim. The dSPACE ASM vehicle dynamics model makes it possible to simulate elements of the car – suspension, tires, brakes all the way to the full vehicle powertrain and its interaction with the electronic control units that power actions such as steering, braking, and acceleration.

In January 2020, Michelin installed an Ansible Motion Driver-in-the-Loop simulator at its North America R&D center. The company has developed the Tame Tire model, which can calculate the thermal and transient state of tires, in both online and offline simulations.

Competitive Landscape

The driving simulator market is fragmented with several active players’ presence, which includes major existing companies and new startups. Some of the major players in the market are Cruden BV, AutoSim AS, AVSimulation, and Ansible Motion.As the market is growing rapidly, the simulator companies are forming strategic alliances with other players in the market and incorporating the latest feature in their driving simulators. For instance,

  • In September 2020, Cruden has partnered with dSPACE, a leading provider of solutions for developing connected, autonomous and electrically powered vehicles, to supply the world’s first driving simulator integrated with a wet bench testing rig at the technical centre in Shanghai.
  • In January 2020, AVSimulation signed a partnership agreement with UTAC Ceram. With this agreement, AVSimulation is planning to offer the latest Euro NCAP type test protocols apart from the regulatory protocols through its scanner platform.

Reasons to Purchase this report:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

Key Topics Covered:

1 INTRODUCTION

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS
4.1 Market Driver
4.2 Market Restraint
4.3 Industry Attractiveness – Porter’s Five Forces Analysis

5 MARKET SEGMENTATION
5.1 By Vehicle Type
5.1.1 Passenger Car
5.1.2 Commercial Vehicle
5.2 By Application Type
5.2.1 Training
5.2.2 Testing & Research
5.3 By Simulator Type
5.3.1 Compact Simulator
5.3.2 Full-scale Simulator
5.3.3 Advanced Simulator
5.4 By Geography
5.4.1 North America
5.4.1.1 United States
5.4.1.2 Canada
5.4.1.3 Rest of North America
5.4.2 Europe
5.4.2.1 Germany
5.4.2.2 United Kingdom
5.4.2.3 France
5.4.2.4 Rest of Europe
5.4.3 Asia-Pacific
5.4.3.1 India
5.4.3.2 China
5.4.3.3 Japan
5.4.3.4 South Korea
5.4.3.5 Rest of Asia-Pacific
5.4.4 Rest of the World
5.4.4.1 Brazil
5.4.4.2 United Arab Emirates
5.4.4.3 Other Countries

6 COMPETITIVE LANDSCAPE
6.1 Vendor Market Share
6.2 Company Profiles
6.2.1 AutoSim AS
6.2.2 AVSimulation
6.2.3 VI-grade Gmbh
6.2.4 Ansible Motion
6.2.5 Cruden BV
6.2.6 Tecknotrove Simulator System Pvt. Ltd
6.2.7 IPG Automotive GmbH
6.2.8 CAE Value
6.2.9 Virage Simulation
6.2.10 XPI Simulation

7 MARKET OPPORTUNITIES AND FUTURE TRENDS

For more information about this report visit https://www.researchandmarkets.com/r/p3o4wc


GlobeNewswire is one of the world's largest newswire distribution networks, specializing in the delivery of corporate press releases financial disclosures and multimedia content to the media, investment community, individual investors and the general public.

Artificial Intelligence

Elevate Your Virtual Reality Experience with KIWI design RGB Vertical Stand, Now Available on Meta’s Website

Published

on

elevate-your-virtual-reality-experience-with-kiwi-design-rgb-vertical-stand,-now-available-on-meta’s-website

LOS ANGELES, May 11, 2024 /PRNewswire/ — Top-tier VR accessories provider KIWI design has launched its latest product, the RGB Vertical Stand. This Meta-authorized accessory, designed to deepen users’ immersion in the metaverse, is now available on the official Meta website.

“KIWI design’s commitment to pushing the boundaries of virtual reality accessories takes another leap forward with the introduction of our new products,” said Ray,the CEO of KIWI design. “We are always dedicated to bringing innovative upgrades to VR device accessories, with the goal of enriching users’ virtual reality experiences.”
The newly launched RGB Vertical Stand features a user-friendly modular design with push-in assembly, making it easy to set up and use. It is compatible with Meta Quest 3, Quest 2, and Quest Pro, ensuring widespread usability. With a magnetic USB Type-C connector, it provides an effortless way to charge and display your headset. Users can also customize their display with 16 pre-set ambient multicolor RGB light options.
With VR technology constantly evolving, users are seeking more immersive experiences. As a leading manufacturer of VR accessories, KIWI design is committed to enhancing the user experience, through unique product designs. Since its establishment in 2015, KIWI design has acquired over 100 patents and has a diverse product lineup, including head straps, facial interfaces, VR stands, charging accessories, and controller grip covers.
KIWI design has also actively participated in the Made for Meta program, which is provided by Meta to strengthen its partnerships with leading brands to deliver accessories that enhance Meta products with more choice and a richer experience for everyone. KIWI design’s participation in this program validates its high-quality design standards.
The RGB Vertical Stand for Meta Quest 3, Quest 2, and Quest Pro and another specially designed authorized charging dock for the Meta  Oculus Quest 2 are now available for purchase on both KIWI design’s website and Amazon. For more information about our brand and products, please visit our website and follow KIWI design on Facebook, Instagram, X, YouTube and TikTok.
https://www.kiwidesign.com/
https://www.facebook.com/KIWIdesignOfficial
https://www.instagram.com/kiwidesignins/

https://www.youtube.com/channel/UCOzFWarIschBuBfNz01Oucw
TikTok – Make Your Day
Photo – https://mma.prnewswire.com/media/2410344/image.jpg

View original content:https://www.prnewswire.co.uk/news-releases/elevate-your-virtual-reality-experience-with-kiwi-design-rgb-vertical-stand-now-available-on-metas-website-302142936.html

Continue Reading

Artificial Intelligence

WIO Taps Gracenote to Revolutionize Television Broadcast Reporting

Published

on

wio-taps-gracenote-to-revolutionize-television-broadcast-reporting

LOS ANGELES, May 11, 2024 /PRNewswire/ — WIO LLC, parent company of the global TV broadcast airings platform, WIOpro™, has announced a new strategic agreement with Gracenote, the global content data business unit of Nielsen, to address the longstanding challenge of accurately tracking and collecting music royalties generated by broadcast television and digital programming, With this agreement, WIO will integrate Gracenote TV program metadata and show airings into its WIOpro™ (“When’s It On – Professional”) platform enabling performance rights organizations, copyright management organizations and other entities to better monitor broadcast schedules and identify when royalties have been earned.

By integrating Gracenote historical program data into WIOpro’s new LookBack™ feature, WIO is enhancing its reporting capabilities and empowering Collection Societies, Rights Management Companies and the royalty-earning community to more easily monitor and export broadcast airings and better understand collections opportunities.
“At WIO, we are committed to empowering collection societies and copyright holders around the world with our platform tools and unprecedented access to the best and most accurate television broadcast and streaming data available,” said Shawn Pierce, Co-Founder and CEO of WIO LLC. “We have enjoyed an incredible relationship with Gracenote for 10 years. With the solidification of this agreement, we are able to deliver an unrivaled dataset to the royalty and residual community in a way that has not been offered before.” said Adam Shafron, Co-Founder and CTO of WIO LLC.
“WIO’s platform developed to solve the difficult matter of royalty tracking only becomes more powerful based on the integration of accurate, timely and comprehensive Gracenote metadata,” said Scott Monahan, Director, Strategic Partnerships, Gracenote. “We look forward to the combination of WIOpro’s technology and Gracenote’s program metadata delivering on the promise of transforming music royalty collection so that rights holders can be fairly compensated for use of their work.”
WIO and Gracenote will be at the MusicBiz 2024 conference in Nashville, TN May 13 – 16. Contact Dave Pelman, COO of WIO LLC at [email protected] for media queries or to book an appointment for a product demonstration.
About WIO:WIO is a technology company dedicated to providing broadcast television and digital programming data tailored specifically for the royalty and residual collection industry. Through its platform WIOpro (wiopro.com), users obtain access to real-time broadcast insights, reporting and curated data delivery.
About Gracenote:Gracenote is the content data business unit of Nielsen providing entertainment metadata, connected IDs and related offerings to the world’s leading creators, distributors and platforms. Gracenote enables advanced content navigation and discovery capabilities helping individuals easily connect to the TV shows, movies, music, podcasts and sports they love while delivering powerful content analytics making complex business decisions simpler.
Logo – https://mma.prnewswire.com/media/2410159/wio_gracenote.jpg
Logo – https://mma.prnewswire.com/media/2410160/powered_by_gracenote_logo.jpg

View original content:https://www.prnewswire.co.uk/news-releases/wio-taps-gracenote-to-revolutionize-television-broadcast-reporting-302142826.html

Continue Reading

Artificial Intelligence

IDTechEx Explores Printed Electronics in Electrified and Autonomous Mobility

Published

on

idtechex-explores-printed-electronics-in-electrified-and-autonomous-mobility

BOSTON, May 10, 2024 /PRNewswire/ — Electrification, autonomy, and vehicle ownership saturation are causing a technological revolution in the automotive sector. These automotive meta-trends are driving drastic changes in electronic component requirements and present a high-volume opportunity for printed electronics to capitalize on.

Historically, printed electronics technologies have nurtured a close relationship with the automotive sector, with printed force sensors pioneering passenger safety through seat occupancy and seatbelt detection. As such, the automotive sector continues to represent the lion’s share of the global printed and flexible sensor market, which IDTechEx’s report on the topic evaluates as worth US$421M in 2024. However, if the automotive sector is to continue to be a reliable revenue stream, printed electronics technology providers must adapt to address the emerging technical challenges facing future mobility.
Augmenting autonomous vehicles with printed electronics
As vehicle autonomy levels advance, the increasing number and distribution of spatial mapping sensors required will need continuous performance improvements to ensure passenger safety. Emerging printed electronics technologies can augment these sensors, extending detection bandwidth and maximizing reliability during operation.
Transparent conductive films (TCFs) are being developed to heat and defog LiDAR sensor panels, ensuring the function is unperturbed by external environmental conditions. Properties such as high transparency and low haze are important for defogging. These properties can be easily tuned using the wide variety of material options available for TCFs, including carbon nanotubes and silver nanowires.
IDTechEx identifies printed heating as a leading application of transparent conductive films. This is attributed to diminishing growth prospects in capacitive touch sensing applications. Innovations in thin film coating techniques have enabled indium tin oxide (ITO) to dominate touch sensing applications, all but displacing TCFs completely.
Looking towards the future, printed electronics technologies could play a more active role in advanced autonomous driving. Emerging semiconductive materials, such as quantum dots, printed directly onto conventional silicon image sensor arrays can extend detection range and sensitivity deeper into the infrared region. Augmenting existing image sensor technology with enhanced spectral range could facilitate the competition of hybrid silicon sensors with established InGaAs detectors.
Printed sensors promise granularized battery health monitoring
Vehicle electrification is driving the sustained development and evolution of electronic management systems, particularly in the battery and electric drivetrain. A strong market pull exists for technologies that increase vehicle efficiency, range, and lifetime while reducing recharge times.
Printed pressure and temperature sensors measure battery cell swelling and thermal profiles, providing granularized physical data that can be used to optimize battery deployment and recharging. Moreover, hybrid printed sensors that combine integrated printed heating elements promise a solution to actively address battery temperature. IDTechEx estimates that printed sensor-enabled battery deployment and charging optimizations could be worth up to US$3000 in savings per vehicle.
There remains uncertainty about whether electrification trends will correspond to increased demand for physical sensors in electric vehicle batteries, owing to the utility of existing electronic readouts for managing deployment. Virtual sensors also pose a threat, where AI-enabled software models interpret data to predict and emulate physical sensor functions without the need for discreet components. However, emerging regulations regarding safety and sensor redundancy will likely favor measurable metrics and see automotive makers continue to adopt physical sensors. IDTechEx predicts that virtual sensors are unlikely to displace their physical counterparts – so long as low-cost sensors remain widely available.
Embedding printed electronics in the car of the future
IDTechEx predicts that global car sales will saturate over the next decade, with automakers increasingly looking for premium features and technical innovations to differentiate themselves from the competition. In-cabin technologies will be highly desirable – as the location where passengers reside and interact with the vehicle the most.
Lighting elements are emerging as a prominent differentiator, described as “the new chrome” by Volkswagen’s chief designer. The use of in-mold structural electronics (IMSE) enables the integration of embedded lighting elements using existing manufacturing processes. 3D electronics technologies are intrinsically attractive for automotive integration, as functional layers are conformable and lightweight while easily embedded within existing aesthetic elements.
Despite strong tailwinds, the adoption of in-mold electronics within automotive interiors has been sluggish. This is attributed to the challenges of meeting automotive qualification requirements, as well as stiff competition with less sophisticated alternatives such as applying functional films to thermoformed parts. Nevertheless, momentum is building, with technology providers like Tactotek partnering with Mercedes-Benz and Stallantis to progress the automotive validation of IMSE to TRL5.
Outlook for printed electronics in automotive applications
Just as printed force sensors heralded early passenger safety systems, printed electronics technology is poised to underpin next-generation innovations for the car of the future. But this time, the competition will be stiff. Critical cost requirements must be met, while desirable new functionality must address existing challenges faced by manufacturers. Printed electronics can play a role in supporting emerging electrified and autonomous mobility, such as augmenting LiDAR sensors or optimizing electric battery deployment. Demand for technologies that enhance passenger experience and vehicle aesthetics will continue to grow, and printed electronics can supply low-power, lightweight lighting solutions for these.
Sustained engagement from tier suppliers and manufacturers continues to make the automotive sector key to printed sensor market growth opportunities – a total market IDTechEx predicts will reach US$960M by 2034. Strong partnerships between material providers and printed electronics technology providers are complementary to those of the highly vertically integrated automotive value chains between tier suppliers and OEMs. Leveraging printing techniques to provide solutions that slot into existing manufacturing processes and designs will be crucial. In the medium term, the printed electronics technologies most likely to realize revenue potential are those that can adapt to service emerging challenges already known to the automotive industry.
For more information on IDTechEx’s research on this topic, please see their report, “Printed and Flexible Sensors 2024-2034: Technologies, Players, Markets”. Downloadable sample pages are available for this report.
For the full portfolio of printed and flexible electronics market research from IDTechEx, please visit www.IDTechEx.com/Research/PE.
About IDTechEx:
IDTechEx provides trusted independent research on emerging technologies and their markets. Since 1999, we have been helping our clients to understand new technologies, their supply chains, market requirements, opportunities and forecasts. For more information, contact [email protected] or visit www.IDTechEx.com. 
Image download:
https://www.dropbox.com/scl/fo/26ylbecu6ztl4larjuycj/AFbRjqvsovp8yj-f9JOQLEg?rlkey=4e2lb1pqbl9rsfzp73bunm57j&st=t60swtdx&dl=0 
Media Contact:
Lucy RogersSales and Marketing [email protected] +44(0)1223 812300
Social Media Links:
Twitter: www.twitter.com/IDTechExLinkedIn: www.linkedin.com/company/IDTechEx
Photo – https://mma.prnewswire.com/media/2408851/IDTechEx_applications.jpg

View original content:https://www.prnewswire.co.uk/news-releases/idtechex-explores-printed-electronics-in-electrified-and-autonomous-mobility-302141570.html

Continue Reading

Trending