Connect with us
MARE BALTICUM Gaming & TECH Summit 2024

Artificial Intelligence

Mydecine Provides Company Update; Welcomes New Board Member

Published

on

DENVER, June 09, 2022 (GLOBE NEWSWIRE) — Mydecine Innovations Group Inc. (NEO: MYCO) (OTC: MYCOF) (FSE: 0NFA) (“Mydecine” or the “Company”), a biotechnology company aiming to transform the treatment of mental health and addiction disorders, today provided an update on clinical trial and drug development initiatives, and appointed a new member to its Board of Directors.

Corporate Update

“As we near the end of the second quarter, I’m proud of the progress our team has made despite the volatile and uncertain market conditions,” said Mydecine CEO Josh Bartch. “Our focus remains on creating value for our shareholders by focusing on efforts to set Mydecine up for future success. We believe our recent consolidation will make the company’s share position more appealing to a broader range of investors moving forward; as well as face less resistance in the positive movement of the stock price. We have significantly decreased our burn rate since Q4 2021, in order to have sufficient capital available to meet our next clinical trial and drug development milestones.”

Mydecine closed two separate financings in May 2022 for a total of $4.5 CAD in gross proceeds to the company.

The Company also announced today the appointment of Todd Heinzl to its board of directors to replace Independent Director, Gordon Neal. Mr. Heinzl holds over 30 years of experience in the investment, merchant banking, and financial services industry. Mr. Heinzl’s expertise centers around assisting globally minded small and mid-cap companies by developing adequate corporate governance policies.

Clinical Trial Update

“Based on feedback  from the FDA during our pre-IND meeting in February, we’ve pivoted our clinical trial strategy from a seamless Phase 2/3 design, to a Phase 2b and subsequent  Phase 3 study,” said Mydecine Chief Medical Officer Dr. Rakesh Jetly. “We have increased the number of subjects for the Phase 2b trial and are optimistic that it will be considered a pivotal study by the FDA. By separating our single seamless trial into two, we also gain the advantage of making protocol adjustments between Phase 2b and Phase 3. This pivot has pushed our trial timeline slightly; however, it allows us to publish clinical data after the Phase 2b study rather than waiting for the entire Phase 2/3 study to be completed and could ultimately increase our speed to market.”

The Company plans to submit full Breakthrough Therapy Status and Investigational New Drug applications in early Q4 2022 and hopes to gain full clearance within 30 days after submission.

Drug Development Update

In January, Mydecine announced it completed a target based 5-HT2A model for its artificial intelligence (AI) and machine learning (ML) drug discovery program. Today the Company shares that it has completed the 5-HT2B model and intends to develop the entire family of serotonin receptors.

“As we continue to complete more target based models for our AI program, we exponentially increase our ability to produce viable drug candidates and diversify our molecule portfolio with long term treatment options that can reduce known risks. Mitigating the risk of valvulopathy due to long term activation of the 5-HT2B receptor, which is linked to heart valve disease, is one example,” said Chief Scientific Officer Rob Roscow.

Past research has shown there is strong correlation between binding to the 5-HT2B receptor and heart valve tissue fibrosis. By filtering its lead drug candidates against both receptor models, the Company can more efficiently filter out drug candidates that have strong binding affinity to the 5-HT2A receptor but weak or no binding to the 5-HT2B receptor. This process leads to increased likelihood of desired outcomes.

“Our lead drug candidates are showing strong promise in receptor selectivity. Preclinical data of our new chemical entities (NCEs) continues to support our initial hypothesis that these new families of molecules are safer and offer more control than the first generation psychedelic compounds. Our NCE program continues to gain interest from groups in the psychedelic space, who are specifically excited about our psilocin prodrugs, as we believe they offer a very quick regulatory pathway,” Roscow added.

The Company’s AI-driven drug discovery program is led by Principal Investigator Dr. Khaled Barakat out of the University of Alberta. The University of Alberta is ranked top 3 globally for AI research and considered Canada’s number one Computing Science Department.

Learn more about Mydecine’s drug development efforts by clicking here.

About Mydecine Innovations Group Inc.
Mydecine Innovations Group Inc. (NEO:MYCO) (OTC:MYCOF) (FSE:0NFA) is a biotechnology company developing innovative first- and-second-generation novel therapeutics for the treatment of mental health and addiction using world-class technology and drug development infrastructure. Mydecine was founded in 2020 to address a significant unmet need and lack of innovation in the mental health and therapeutic treatment environments. Our global team is dedicated to efficiently developing new therapeutics to treat PTSD, depression, anxiety, addiction and other mental health disorders. The Mydecine business model combines clinical trials and data outcome, technology, and scientific and regulatory expertise with a focus on psychedelic therapy, as well as other novel, non-psychedelic molecules with therapeutic potential. By collaborating with some of the world’s foremost authorities, Mydecine aims to responsibly fast-track the development of new medicines to provide patients suffering from mental health disorders with safe and more effective treatment options. Mydecine Innovations Group is headquartered in Denver, Colorado, USA, with international offices in Leiden, Netherlands.

Learn more at: https://www.mydecine.com and follow Mydecine on Twitter, LinkedIn, YouTube and Instagram.

Sign up for Mydecine’s newsletter here.

For more information, please contact:

Media Contact
Morgan Kervitsky, Director of Marketing
[email protected]

Investor Relations
Morgan Kervitsky, Director of Marketing
[email protected]

On behalf of the Board of Directors:
Joshua Bartch, Chief Executive Officer
[email protected]

For further information about Mydecine Innovations Group, Inc., please visit the Company’s profile on SEDAR at www.sedar.com or visit the Company’s website at www.mydecine.com.

This news release contains forward-looking information within the meaning of Canadian securities laws regarding the Company and its business, which relate to future events or future performance and reflect management’s current expectations and assumptions. Often but not always, forward-looking information can be identified by the use of words such as “expect”, “intends”, “anticipated”, “believes” or variations (including negative variations) of such words and phrases, or state that certain actions, events or results “may”, “could”, “would” or “will” be taken, occur or be achieved. Such forward-looking statements reflect management’s current beliefs and are based on assumptions made by and information currently available to the Company. Readers are cautioned that these forward-looking statements are neither promises nor guarantees, and are subject to risks and uncertainties that may cause future results to differ materially from those expected including, without limitation, risks regarding the COVID-19 pandemic, the availability and continuity of financing, the ability of the Company to adequately protect and enforce its intellectual property, the Company’s ability to bring its products to commercial production, continued growth of the global adaptive pathway medicine, natural health products and digital health industries, and the risks presented by the highly regulated and competitive market concerning the development, production, sale and use of the Company’s products. Although the Company has attempted to identify important factors that could cause actual results to differ materially from those contained in forward-looking information, there may be other factors that cause results not to be as anticipated, estimated or intended. There can be no assurance that such information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. These forward-looking statements are made as of the date hereof and the Company does not assume any obligation to update or revise them to reflect new events or circumstances save as required under applicable securities legislation.

 

GlobeNewswire is one of the world's largest newswire distribution networks, specializing in the delivery of corporate press releases financial disclosures and multimedia content to the media, investment community, individual investors and the general public.

Artificial Intelligence

Elevate Your Virtual Reality Experience with KIWI design RGB Vertical Stand, Now Available on Meta’s Website

Published

on

elevate-your-virtual-reality-experience-with-kiwi-design-rgb-vertical-stand,-now-available-on-meta’s-website

LOS ANGELES, May 11, 2024 /PRNewswire/ — Top-tier VR accessories provider KIWI design has launched its latest product, the RGB Vertical Stand. This Meta-authorized accessory, designed to deepen users’ immersion in the metaverse, is now available on the official Meta website.

“KIWI design’s commitment to pushing the boundaries of virtual reality accessories takes another leap forward with the introduction of our new products,” said Ray,the CEO of KIWI design. “We are always dedicated to bringing innovative upgrades to VR device accessories, with the goal of enriching users’ virtual reality experiences.”
The newly launched RGB Vertical Stand features a user-friendly modular design with push-in assembly, making it easy to set up and use. It is compatible with Meta Quest 3, Quest 2, and Quest Pro, ensuring widespread usability. With a magnetic USB Type-C connector, it provides an effortless way to charge and display your headset. Users can also customize their display with 16 pre-set ambient multicolor RGB light options.
With VR technology constantly evolving, users are seeking more immersive experiences. As a leading manufacturer of VR accessories, KIWI design is committed to enhancing the user experience, through unique product designs. Since its establishment in 2015, KIWI design has acquired over 100 patents and has a diverse product lineup, including head straps, facial interfaces, VR stands, charging accessories, and controller grip covers.
KIWI design has also actively participated in the Made for Meta program, which is provided by Meta to strengthen its partnerships with leading brands to deliver accessories that enhance Meta products with more choice and a richer experience for everyone. KIWI design’s participation in this program validates its high-quality design standards.
The RGB Vertical Stand for Meta Quest 3, Quest 2, and Quest Pro and another specially designed authorized charging dock for the Meta  Oculus Quest 2 are now available for purchase on both KIWI design’s website and Amazon. For more information about our brand and products, please visit our website and follow KIWI design on Facebook, Instagram, X, YouTube and TikTok.
https://www.kiwidesign.com/
https://www.facebook.com/KIWIdesignOfficial
https://www.instagram.com/kiwidesignins/

https://www.youtube.com/channel/UCOzFWarIschBuBfNz01Oucw
TikTok – Make Your Day
Photo – https://mma.prnewswire.com/media/2410344/image.jpg

View original content:https://www.prnewswire.co.uk/news-releases/elevate-your-virtual-reality-experience-with-kiwi-design-rgb-vertical-stand-now-available-on-metas-website-302142936.html

Continue Reading

Artificial Intelligence

WIO Taps Gracenote to Revolutionize Television Broadcast Reporting

Published

on

wio-taps-gracenote-to-revolutionize-television-broadcast-reporting

LOS ANGELES, May 11, 2024 /PRNewswire/ — WIO LLC, parent company of the global TV broadcast airings platform, WIOpro™, has announced a new strategic agreement with Gracenote, the global content data business unit of Nielsen, to address the longstanding challenge of accurately tracking and collecting music royalties generated by broadcast television and digital programming, With this agreement, WIO will integrate Gracenote TV program metadata and show airings into its WIOpro™ (“When’s It On – Professional”) platform enabling performance rights organizations, copyright management organizations and other entities to better monitor broadcast schedules and identify when royalties have been earned.

By integrating Gracenote historical program data into WIOpro’s new LookBack™ feature, WIO is enhancing its reporting capabilities and empowering Collection Societies, Rights Management Companies and the royalty-earning community to more easily monitor and export broadcast airings and better understand collections opportunities.
“At WIO, we are committed to empowering collection societies and copyright holders around the world with our platform tools and unprecedented access to the best and most accurate television broadcast and streaming data available,” said Shawn Pierce, Co-Founder and CEO of WIO LLC. “We have enjoyed an incredible relationship with Gracenote for 10 years. With the solidification of this agreement, we are able to deliver an unrivaled dataset to the royalty and residual community in a way that has not been offered before.” said Adam Shafron, Co-Founder and CTO of WIO LLC.
“WIO’s platform developed to solve the difficult matter of royalty tracking only becomes more powerful based on the integration of accurate, timely and comprehensive Gracenote metadata,” said Scott Monahan, Director, Strategic Partnerships, Gracenote. “We look forward to the combination of WIOpro’s technology and Gracenote’s program metadata delivering on the promise of transforming music royalty collection so that rights holders can be fairly compensated for use of their work.”
WIO and Gracenote will be at the MusicBiz 2024 conference in Nashville, TN May 13 – 16. Contact Dave Pelman, COO of WIO LLC at [email protected] for media queries or to book an appointment for a product demonstration.
About WIO:WIO is a technology company dedicated to providing broadcast television and digital programming data tailored specifically for the royalty and residual collection industry. Through its platform WIOpro (wiopro.com), users obtain access to real-time broadcast insights, reporting and curated data delivery.
About Gracenote:Gracenote is the content data business unit of Nielsen providing entertainment metadata, connected IDs and related offerings to the world’s leading creators, distributors and platforms. Gracenote enables advanced content navigation and discovery capabilities helping individuals easily connect to the TV shows, movies, music, podcasts and sports they love while delivering powerful content analytics making complex business decisions simpler.
Logo – https://mma.prnewswire.com/media/2410159/wio_gracenote.jpg
Logo – https://mma.prnewswire.com/media/2410160/powered_by_gracenote_logo.jpg

View original content:https://www.prnewswire.co.uk/news-releases/wio-taps-gracenote-to-revolutionize-television-broadcast-reporting-302142826.html

Continue Reading

Artificial Intelligence

IDTechEx Explores Printed Electronics in Electrified and Autonomous Mobility

Published

on

idtechex-explores-printed-electronics-in-electrified-and-autonomous-mobility

BOSTON, May 10, 2024 /PRNewswire/ — Electrification, autonomy, and vehicle ownership saturation are causing a technological revolution in the automotive sector. These automotive meta-trends are driving drastic changes in electronic component requirements and present a high-volume opportunity for printed electronics to capitalize on.

Historically, printed electronics technologies have nurtured a close relationship with the automotive sector, with printed force sensors pioneering passenger safety through seat occupancy and seatbelt detection. As such, the automotive sector continues to represent the lion’s share of the global printed and flexible sensor market, which IDTechEx’s report on the topic evaluates as worth US$421M in 2024. However, if the automotive sector is to continue to be a reliable revenue stream, printed electronics technology providers must adapt to address the emerging technical challenges facing future mobility.
Augmenting autonomous vehicles with printed electronics
As vehicle autonomy levels advance, the increasing number and distribution of spatial mapping sensors required will need continuous performance improvements to ensure passenger safety. Emerging printed electronics technologies can augment these sensors, extending detection bandwidth and maximizing reliability during operation.
Transparent conductive films (TCFs) are being developed to heat and defog LiDAR sensor panels, ensuring the function is unperturbed by external environmental conditions. Properties such as high transparency and low haze are important for defogging. These properties can be easily tuned using the wide variety of material options available for TCFs, including carbon nanotubes and silver nanowires.
IDTechEx identifies printed heating as a leading application of transparent conductive films. This is attributed to diminishing growth prospects in capacitive touch sensing applications. Innovations in thin film coating techniques have enabled indium tin oxide (ITO) to dominate touch sensing applications, all but displacing TCFs completely.
Looking towards the future, printed electronics technologies could play a more active role in advanced autonomous driving. Emerging semiconductive materials, such as quantum dots, printed directly onto conventional silicon image sensor arrays can extend detection range and sensitivity deeper into the infrared region. Augmenting existing image sensor technology with enhanced spectral range could facilitate the competition of hybrid silicon sensors with established InGaAs detectors.
Printed sensors promise granularized battery health monitoring
Vehicle electrification is driving the sustained development and evolution of electronic management systems, particularly in the battery and electric drivetrain. A strong market pull exists for technologies that increase vehicle efficiency, range, and lifetime while reducing recharge times.
Printed pressure and temperature sensors measure battery cell swelling and thermal profiles, providing granularized physical data that can be used to optimize battery deployment and recharging. Moreover, hybrid printed sensors that combine integrated printed heating elements promise a solution to actively address battery temperature. IDTechEx estimates that printed sensor-enabled battery deployment and charging optimizations could be worth up to US$3000 in savings per vehicle.
There remains uncertainty about whether electrification trends will correspond to increased demand for physical sensors in electric vehicle batteries, owing to the utility of existing electronic readouts for managing deployment. Virtual sensors also pose a threat, where AI-enabled software models interpret data to predict and emulate physical sensor functions without the need for discreet components. However, emerging regulations regarding safety and sensor redundancy will likely favor measurable metrics and see automotive makers continue to adopt physical sensors. IDTechEx predicts that virtual sensors are unlikely to displace their physical counterparts – so long as low-cost sensors remain widely available.
Embedding printed electronics in the car of the future
IDTechEx predicts that global car sales will saturate over the next decade, with automakers increasingly looking for premium features and technical innovations to differentiate themselves from the competition. In-cabin technologies will be highly desirable – as the location where passengers reside and interact with the vehicle the most.
Lighting elements are emerging as a prominent differentiator, described as “the new chrome” by Volkswagen’s chief designer. The use of in-mold structural electronics (IMSE) enables the integration of embedded lighting elements using existing manufacturing processes. 3D electronics technologies are intrinsically attractive for automotive integration, as functional layers are conformable and lightweight while easily embedded within existing aesthetic elements.
Despite strong tailwinds, the adoption of in-mold electronics within automotive interiors has been sluggish. This is attributed to the challenges of meeting automotive qualification requirements, as well as stiff competition with less sophisticated alternatives such as applying functional films to thermoformed parts. Nevertheless, momentum is building, with technology providers like Tactotek partnering with Mercedes-Benz and Stallantis to progress the automotive validation of IMSE to TRL5.
Outlook for printed electronics in automotive applications
Just as printed force sensors heralded early passenger safety systems, printed electronics technology is poised to underpin next-generation innovations for the car of the future. But this time, the competition will be stiff. Critical cost requirements must be met, while desirable new functionality must address existing challenges faced by manufacturers. Printed electronics can play a role in supporting emerging electrified and autonomous mobility, such as augmenting LiDAR sensors or optimizing electric battery deployment. Demand for technologies that enhance passenger experience and vehicle aesthetics will continue to grow, and printed electronics can supply low-power, lightweight lighting solutions for these.
Sustained engagement from tier suppliers and manufacturers continues to make the automotive sector key to printed sensor market growth opportunities – a total market IDTechEx predicts will reach US$960M by 2034. Strong partnerships between material providers and printed electronics technology providers are complementary to those of the highly vertically integrated automotive value chains between tier suppliers and OEMs. Leveraging printing techniques to provide solutions that slot into existing manufacturing processes and designs will be crucial. In the medium term, the printed electronics technologies most likely to realize revenue potential are those that can adapt to service emerging challenges already known to the automotive industry.
For more information on IDTechEx’s research on this topic, please see their report, “Printed and Flexible Sensors 2024-2034: Technologies, Players, Markets”. Downloadable sample pages are available for this report.
For the full portfolio of printed and flexible electronics market research from IDTechEx, please visit www.IDTechEx.com/Research/PE.
About IDTechEx:
IDTechEx provides trusted independent research on emerging technologies and their markets. Since 1999, we have been helping our clients to understand new technologies, their supply chains, market requirements, opportunities and forecasts. For more information, contact [email protected] or visit www.IDTechEx.com. 
Image download:
https://www.dropbox.com/scl/fo/26ylbecu6ztl4larjuycj/AFbRjqvsovp8yj-f9JOQLEg?rlkey=4e2lb1pqbl9rsfzp73bunm57j&st=t60swtdx&dl=0 
Media Contact:
Lucy RogersSales and Marketing [email protected] +44(0)1223 812300
Social Media Links:
Twitter: www.twitter.com/IDTechExLinkedIn: www.linkedin.com/company/IDTechEx
Photo – https://mma.prnewswire.com/media/2408851/IDTechEx_applications.jpg

View original content:https://www.prnewswire.co.uk/news-releases/idtechex-explores-printed-electronics-in-electrified-and-autonomous-mobility-302141570.html

Continue Reading

Trending