Connect with us
MARE BALTICUM Gaming & TECH Summit 2024

Artificial Intelligence

BYND Cannasoft Enterprises Inc. Launches Beta Test for Managing Farms CRM Platform at Israel’s Weizmann Institute of Science

Published

on

VANCOUVER, British Columbia, Sept. 28, 2022 (GLOBE NEWSWIRE) — BYND Cannasoft Enterprises Inc. (NASDAQ: BCAN) (CSE: BYND) (“BYND” or the “Company”) announced that its subsidiary BYND – Beyond Solutions Ltd. has signed an agreement with the Weizmann Institute of Science for the use of its proprietary software. Under the terms of the agreement, the Weizmann Institute of Science will use a beta version of the software provided as SAAS. The beta version will include BYND Cannasoft Enterprises’ C.R.M. System – Job Management (BENEFIT), as well as a module system (CANNASOFT) for managing farms and greenhouses with varied crops. BYND Cannasoft Enterprises will grant the Weizmann Institute a permit to use the license free of charge for a period of one year, after which the institute will have the right to extend the agreement and the Company will be paid a rate according to the agreement.

The Weizmann Institute of Science is one of the world’s leading multidisciplinary basic research institutions in the natural and exact sciences. It is located in Rehovot, Israel, just south of Tel Aviv. It has a long history of investigation and discovery rooted in a mission of advancing science for the benefit of humanity. In parallel, it educates a substantial proportion of Israel’s scientific leadership and advances science literacy in schools and among the public. The Weizmann Institute of Science has pioneered research using CBD to treat conditions as diverse as glaucoma, Parkinson’s, chemotherapy side effects, MS, and Crohn’s, while using advanced tools, like CRISPR gene editing, to further understand cannabis.

Yftah Ben Yaackov, CEO and a Director of BYND, said, “This is an extremely important step in the development of BYND Cannasoft Enterprises medical cannabis software since the Weizmann Institute has many greenhouses of various types that can cover all the development possibilities of the software in the coming year. We are honored to have the opportunity to beta test our cloud-based platform with a world-class institution like the Weizmann Institute of Science.”

BYND Cannasoft Enterprises will perform updates and continue to develop its software based on the conclusions and applications of the customer’s interactions. BYND Cannasoft expects additional revenues from the use of the software licenses and from dedicated development for the benefit of the Weizmann Institute of Science.

About the Weizmann Institute of Science

The Weizmann Institute of Science in Israel is one of the world’s top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, Weizmann Institute’s scientists are advancing research on the human brain, artificial intelligence, computer science and encryption, astrophysics, and particle physics, and are tackling diseases such as cancer, while also addressing climate change through environmental, ocean, and plant sciences.

About BYND Cannasoft Enterprises Inc.  

BYND is an integrated software/cannabis company, based in Israel.   

CRM Software

BYND owns and markets a proprietary customer relationship management (CRM) software product, known as “Benefit CRM”. BYND’s Benefit CRM software enables small and medium‐sized businesses to optimize their day‐to‐day business activities such as sales management, personnel management, marketing, call center activities and asset management. BYND’s next-generation Benefit CRM platform is now ready for BETA testing.

Cannabis CRM

Building on its 20 years of experience in CRM software, BYND has recently begun development of an innovative new CRM platform, designed specifically to serve the needs of the medical cannabis industry. This new platform will be the first of its kind for the medical cannabis field and the Company is confident it will transform the industry into a more organized, accessible, and price transparent market. Data and information collected through the operation of the Cannabis Farm (see below) and the products it produces will allow BYND to test its new Cannabis CRM platform and adjust the platform as necessary. Additionally, operating the Cannabis Farm and selling medical cannabis will bring in additional revenue to further support BYND during the initial roll‐out years of its cannabis CRM platform.

Cannabis Farm

BYND is in the process of securing approval for the transfer of a primary growing license for growing medical cannabis in Israel and intends to construct a 3.7 acre farm facility near Ashkelon Israel, to grow medical cannabis. The Company’s plans include the construction of 4 state of the art greenhouses, housing approximately 2.5 acres of total growing area.  BYND estimates that once fully operational its Cannabis farm facility will be able to produce 7,500kg of raw cannabis each year.  BYND also intends to work with strategic partners to develop and market new, proprietary cannabis-infused products for sale throughout Israel and for export. For Further Information please refer to the information available on the Company’s website: www.cannasoft‐ crm.com, the CSE’s website:  www.thecse.com/en/listings/life‐sciences/bynd‐cannasoft‐enterprises‐inc and on SEDAR: www.sedar.com.  

Gabi Kabazo 
Chief Financial Officer 
Tel: (604) 833‐6820
e‐mail: ir@cannasoft‐crm.com

For Media and Investor Relations, please contact:
David L. Kugelman
(866) 692-6847 Toll Free – U.S. & Canada
(404) 281-8556 Mobile and WhatsApp
[email protected]
Skype: kugsusa

Cautionary Note Regarding Forward‐Looking Statements

This Press Release contains forward‐looking statements that involve risks and uncertainties, which may cause actual results to differ materially from the statements made. When used in this document, the words “may”, “would”, “could”, “will”, “intend”, “plan”, “anticipate”, “believe”, “estimate”, “expect” and similar expressions are intended to identify forward‐looking statements.. Such statements reflect our current views with respect to future events and are subject to such risks and uncertainties. Many factors could cause our actual results to differ materially from the statements made, including those factors discussed in filings made by us with the Canadian securities regulatory authorities and the U.S. Securities and Exchange Commission. Should one or more of these risks and uncertainties, such as currency and interest rate fluctuations, increased competition, and general economic and market factors, occur or should assumptions underlying the forward-looking statements prove incorrect, actual results may vary materially from those described herein as intended, planned, anticipated, or expected. We do not intend and do not assume any obligation to update these forward‐looking statements, except as required by law. Shareholders are cautioned not to put undue reliance on such forward‐looking statements.

Neither the U.S. Securities and Exchange Commission nor the CSE has reviewed, approved or disapproved the content of this press release.

GlobeNewswire is one of the world's largest newswire distribution networks, specializing in the delivery of corporate press releases financial disclosures and multimedia content to the media, investment community, individual investors and the general public.

Artificial Intelligence

Elevate Your Virtual Reality Experience with KIWI design RGB Vertical Stand, Now Available on Meta’s Website

Published

on

elevate-your-virtual-reality-experience-with-kiwi-design-rgb-vertical-stand,-now-available-on-meta’s-website

LOS ANGELES, May 11, 2024 /PRNewswire/ — Top-tier VR accessories provider KIWI design has launched its latest product, the RGB Vertical Stand. This Meta-authorized accessory, designed to deepen users’ immersion in the metaverse, is now available on the official Meta website.

“KIWI design’s commitment to pushing the boundaries of virtual reality accessories takes another leap forward with the introduction of our new products,” said Ray,the CEO of KIWI design. “We are always dedicated to bringing innovative upgrades to VR device accessories, with the goal of enriching users’ virtual reality experiences.”
The newly launched RGB Vertical Stand features a user-friendly modular design with push-in assembly, making it easy to set up and use. It is compatible with Meta Quest 3, Quest 2, and Quest Pro, ensuring widespread usability. With a magnetic USB Type-C connector, it provides an effortless way to charge and display your headset. Users can also customize their display with 16 pre-set ambient multicolor RGB light options.
With VR technology constantly evolving, users are seeking more immersive experiences. As a leading manufacturer of VR accessories, KIWI design is committed to enhancing the user experience, through unique product designs. Since its establishment in 2015, KIWI design has acquired over 100 patents and has a diverse product lineup, including head straps, facial interfaces, VR stands, charging accessories, and controller grip covers.
KIWI design has also actively participated in the Made for Meta program, which is provided by Meta to strengthen its partnerships with leading brands to deliver accessories that enhance Meta products with more choice and a richer experience for everyone. KIWI design’s participation in this program validates its high-quality design standards.
The RGB Vertical Stand for Meta Quest 3, Quest 2, and Quest Pro and another specially designed authorized charging dock for the Meta  Oculus Quest 2 are now available for purchase on both KIWI design’s website and Amazon. For more information about our brand and products, please visit our website and follow KIWI design on Facebook, Instagram, X, YouTube and TikTok.
https://www.kiwidesign.com/
https://www.facebook.com/KIWIdesignOfficial
https://www.instagram.com/kiwidesignins/

https://www.youtube.com/channel/UCOzFWarIschBuBfNz01Oucw
TikTok – Make Your Day
Photo – https://mma.prnewswire.com/media/2410344/image.jpg

View original content:https://www.prnewswire.co.uk/news-releases/elevate-your-virtual-reality-experience-with-kiwi-design-rgb-vertical-stand-now-available-on-metas-website-302142936.html

Continue Reading

Artificial Intelligence

WIO Taps Gracenote to Revolutionize Television Broadcast Reporting

Published

on

wio-taps-gracenote-to-revolutionize-television-broadcast-reporting

LOS ANGELES, May 11, 2024 /PRNewswire/ — WIO LLC, parent company of the global TV broadcast airings platform, WIOpro™, has announced a new strategic agreement with Gracenote, the global content data business unit of Nielsen, to address the longstanding challenge of accurately tracking and collecting music royalties generated by broadcast television and digital programming, With this agreement, WIO will integrate Gracenote TV program metadata and show airings into its WIOpro™ (“When’s It On – Professional”) platform enabling performance rights organizations, copyright management organizations and other entities to better monitor broadcast schedules and identify when royalties have been earned.

By integrating Gracenote historical program data into WIOpro’s new LookBack™ feature, WIO is enhancing its reporting capabilities and empowering Collection Societies, Rights Management Companies and the royalty-earning community to more easily monitor and export broadcast airings and better understand collections opportunities.
“At WIO, we are committed to empowering collection societies and copyright holders around the world with our platform tools and unprecedented access to the best and most accurate television broadcast and streaming data available,” said Shawn Pierce, Co-Founder and CEO of WIO LLC. “We have enjoyed an incredible relationship with Gracenote for 10 years. With the solidification of this agreement, we are able to deliver an unrivaled dataset to the royalty and residual community in a way that has not been offered before.” said Adam Shafron, Co-Founder and CTO of WIO LLC.
“WIO’s platform developed to solve the difficult matter of royalty tracking only becomes more powerful based on the integration of accurate, timely and comprehensive Gracenote metadata,” said Scott Monahan, Director, Strategic Partnerships, Gracenote. “We look forward to the combination of WIOpro’s technology and Gracenote’s program metadata delivering on the promise of transforming music royalty collection so that rights holders can be fairly compensated for use of their work.”
WIO and Gracenote will be at the MusicBiz 2024 conference in Nashville, TN May 13 – 16. Contact Dave Pelman, COO of WIO LLC at [email protected] for media queries or to book an appointment for a product demonstration.
About WIO:WIO is a technology company dedicated to providing broadcast television and digital programming data tailored specifically for the royalty and residual collection industry. Through its platform WIOpro (wiopro.com), users obtain access to real-time broadcast insights, reporting and curated data delivery.
About Gracenote:Gracenote is the content data business unit of Nielsen providing entertainment metadata, connected IDs and related offerings to the world’s leading creators, distributors and platforms. Gracenote enables advanced content navigation and discovery capabilities helping individuals easily connect to the TV shows, movies, music, podcasts and sports they love while delivering powerful content analytics making complex business decisions simpler.
Logo – https://mma.prnewswire.com/media/2410159/wio_gracenote.jpg
Logo – https://mma.prnewswire.com/media/2410160/powered_by_gracenote_logo.jpg

View original content:https://www.prnewswire.co.uk/news-releases/wio-taps-gracenote-to-revolutionize-television-broadcast-reporting-302142826.html

Continue Reading

Artificial Intelligence

IDTechEx Explores Printed Electronics in Electrified and Autonomous Mobility

Published

on

idtechex-explores-printed-electronics-in-electrified-and-autonomous-mobility

BOSTON, May 10, 2024 /PRNewswire/ — Electrification, autonomy, and vehicle ownership saturation are causing a technological revolution in the automotive sector. These automotive meta-trends are driving drastic changes in electronic component requirements and present a high-volume opportunity for printed electronics to capitalize on.

Historically, printed electronics technologies have nurtured a close relationship with the automotive sector, with printed force sensors pioneering passenger safety through seat occupancy and seatbelt detection. As such, the automotive sector continues to represent the lion’s share of the global printed and flexible sensor market, which IDTechEx’s report on the topic evaluates as worth US$421M in 2024. However, if the automotive sector is to continue to be a reliable revenue stream, printed electronics technology providers must adapt to address the emerging technical challenges facing future mobility.
Augmenting autonomous vehicles with printed electronics
As vehicle autonomy levels advance, the increasing number and distribution of spatial mapping sensors required will need continuous performance improvements to ensure passenger safety. Emerging printed electronics technologies can augment these sensors, extending detection bandwidth and maximizing reliability during operation.
Transparent conductive films (TCFs) are being developed to heat and defog LiDAR sensor panels, ensuring the function is unperturbed by external environmental conditions. Properties such as high transparency and low haze are important for defogging. These properties can be easily tuned using the wide variety of material options available for TCFs, including carbon nanotubes and silver nanowires.
IDTechEx identifies printed heating as a leading application of transparent conductive films. This is attributed to diminishing growth prospects in capacitive touch sensing applications. Innovations in thin film coating techniques have enabled indium tin oxide (ITO) to dominate touch sensing applications, all but displacing TCFs completely.
Looking towards the future, printed electronics technologies could play a more active role in advanced autonomous driving. Emerging semiconductive materials, such as quantum dots, printed directly onto conventional silicon image sensor arrays can extend detection range and sensitivity deeper into the infrared region. Augmenting existing image sensor technology with enhanced spectral range could facilitate the competition of hybrid silicon sensors with established InGaAs detectors.
Printed sensors promise granularized battery health monitoring
Vehicle electrification is driving the sustained development and evolution of electronic management systems, particularly in the battery and electric drivetrain. A strong market pull exists for technologies that increase vehicle efficiency, range, and lifetime while reducing recharge times.
Printed pressure and temperature sensors measure battery cell swelling and thermal profiles, providing granularized physical data that can be used to optimize battery deployment and recharging. Moreover, hybrid printed sensors that combine integrated printed heating elements promise a solution to actively address battery temperature. IDTechEx estimates that printed sensor-enabled battery deployment and charging optimizations could be worth up to US$3000 in savings per vehicle.
There remains uncertainty about whether electrification trends will correspond to increased demand for physical sensors in electric vehicle batteries, owing to the utility of existing electronic readouts for managing deployment. Virtual sensors also pose a threat, where AI-enabled software models interpret data to predict and emulate physical sensor functions without the need for discreet components. However, emerging regulations regarding safety and sensor redundancy will likely favor measurable metrics and see automotive makers continue to adopt physical sensors. IDTechEx predicts that virtual sensors are unlikely to displace their physical counterparts – so long as low-cost sensors remain widely available.
Embedding printed electronics in the car of the future
IDTechEx predicts that global car sales will saturate over the next decade, with automakers increasingly looking for premium features and technical innovations to differentiate themselves from the competition. In-cabin technologies will be highly desirable – as the location where passengers reside and interact with the vehicle the most.
Lighting elements are emerging as a prominent differentiator, described as “the new chrome” by Volkswagen’s chief designer. The use of in-mold structural electronics (IMSE) enables the integration of embedded lighting elements using existing manufacturing processes. 3D electronics technologies are intrinsically attractive for automotive integration, as functional layers are conformable and lightweight while easily embedded within existing aesthetic elements.
Despite strong tailwinds, the adoption of in-mold electronics within automotive interiors has been sluggish. This is attributed to the challenges of meeting automotive qualification requirements, as well as stiff competition with less sophisticated alternatives such as applying functional films to thermoformed parts. Nevertheless, momentum is building, with technology providers like Tactotek partnering with Mercedes-Benz and Stallantis to progress the automotive validation of IMSE to TRL5.
Outlook for printed electronics in automotive applications
Just as printed force sensors heralded early passenger safety systems, printed electronics technology is poised to underpin next-generation innovations for the car of the future. But this time, the competition will be stiff. Critical cost requirements must be met, while desirable new functionality must address existing challenges faced by manufacturers. Printed electronics can play a role in supporting emerging electrified and autonomous mobility, such as augmenting LiDAR sensors or optimizing electric battery deployment. Demand for technologies that enhance passenger experience and vehicle aesthetics will continue to grow, and printed electronics can supply low-power, lightweight lighting solutions for these.
Sustained engagement from tier suppliers and manufacturers continues to make the automotive sector key to printed sensor market growth opportunities – a total market IDTechEx predicts will reach US$960M by 2034. Strong partnerships between material providers and printed electronics technology providers are complementary to those of the highly vertically integrated automotive value chains between tier suppliers and OEMs. Leveraging printing techniques to provide solutions that slot into existing manufacturing processes and designs will be crucial. In the medium term, the printed electronics technologies most likely to realize revenue potential are those that can adapt to service emerging challenges already known to the automotive industry.
For more information on IDTechEx’s research on this topic, please see their report, “Printed and Flexible Sensors 2024-2034: Technologies, Players, Markets”. Downloadable sample pages are available for this report.
For the full portfolio of printed and flexible electronics market research from IDTechEx, please visit www.IDTechEx.com/Research/PE.
About IDTechEx:
IDTechEx provides trusted independent research on emerging technologies and their markets. Since 1999, we have been helping our clients to understand new technologies, their supply chains, market requirements, opportunities and forecasts. For more information, contact [email protected] or visit www.IDTechEx.com. 
Image download:
https://www.dropbox.com/scl/fo/26ylbecu6ztl4larjuycj/AFbRjqvsovp8yj-f9JOQLEg?rlkey=4e2lb1pqbl9rsfzp73bunm57j&st=t60swtdx&dl=0 
Media Contact:
Lucy RogersSales and Marketing [email protected] +44(0)1223 812300
Social Media Links:
Twitter: www.twitter.com/IDTechExLinkedIn: www.linkedin.com/company/IDTechEx
Photo – https://mma.prnewswire.com/media/2408851/IDTechEx_applications.jpg

View original content:https://www.prnewswire.co.uk/news-releases/idtechex-explores-printed-electronics-in-electrified-and-autonomous-mobility-302141570.html

Continue Reading

Trending