Connect with us
MARE BALTICUM Gaming & TECH Summit 2024

Artificial Intelligence

Global Field Programmable Gate Array Market Report 2023: Integration of FPGA in Cloud Computing and Infrastructure-as-a-Service Presents Opportunities

Published

on

<!– Name:DistributionId Value:8784907 –> <!– Name:EnableQuoteCarouselOnPnr Value:False –> <!– Name:IcbCode Value:2790 –> <!– Name:CustomerId Value:1026737 –> <!– Name:HasMediaSnippet Value:false –> <!– Name:AnalyticsTrackingId Value:25f0c383-2d36-4a4d-a75f-f65b391d1301 –>

Dublin, March 09, 2023 (GLOBE NEWSWIRE) — The “Global Field Programmable Gate Array Market: Analysis By Configuration, By Technology, By Application, By Region Size and Trends with Impact of COVID-19 and Forecast up to 2028” report has been added to ResearchAndMarkets.com’s offering.

The global field programmable gate array (FPGA) market was valued at US$7.87 billion in 2022 and is expected to be worth US$14.16 billion in 2028.

The increasing demand for high-performance computing and data processing is one of the key drivers of the FPGA market. FPGAs are ideal for use in data centers where high-speed processing is required because they can be programmed to perform specific tasks or algorithms. FPGAs can also be used in artificial intelligence (AI) and machine learning (ML) applications, which are growing rapidly. The market is expected to grow at a CAGR of 10.28% over the projected period of 2023-2028.

Market Segmentation Analysis:

  • By Configuration: The report identifies three segments on the basis of configuration: High-range FPGA, Mid-range FPGA and Low-range FPGA. High range FGPA segment dominated the market in 2022. High-range FPGAs are the largest and most powerful FPGAs available, with the ability to contain hundreds of thousands to millions of logic elements. They are capable of handling the most complex designs and can be used for applications such as data center acceleration, high-performance computing, and aerospace and defense systems. The increasing demand for high-performance computing, artificial intelligence (AI), and machine learning (ML) applications, the growing need for data processing and analytics in industries such as finance, healthcare, and retail and the increasing adoption of 5G technology and the need for high-speed networking infrastructure are expected to drive the segment’s growth in coming years.
  • By Technology: The report identifies four segments on the basis of technology: SRAM-based Field Programmable Gate Array (FPGA), Flash-based Field Programmable Gate Array (FPGA), Anti-fuse Based Field Programmable Gate Array (FPGA) and Other FPGA technologies. The Static Random-Access Memory (SRAM) segment held the highest revenue share in 2022, owing to the superior flexibility, re-programmability, high integration, and high performance for a variety of applications. The widespread use of SRAM-based field programmable gate arrays in military and aerospace, telecommunications and wireless communication systems, and consumer goods is boosting segment’s growth.
  • By Application: The report identifies seven segments on the basis of end user: Telecom, Automotive, Industrial, Consumer Electronics, Military & Aerospace, Data Processing and Others. The telecom sector had the highest revenue share in 2022 and is expected to maintain the dominance over the forecast period. The widespread use of field programmable gate arrays (FPGAs) in wireless communication and telecommunication sectors for a variety of applications such as data packet switching, packet processing, and optical transport networks is propelling the FPGA market forward. Furthermore, they provide bandwidth to telecom service providers in order for them to create compatible networks ranging from 3G to LTE and beyond. The introduction of 5G networks is expected to propel FPGA growth even further from 2023 to 2028, as they provide configurability, flexible hardware accelerators, high-speed switching, and low-latency operation at low cost.
  • By Region: In the report, the global field programmable gate array (FPGA) market is divided into five regions: Asia Pacific, North America, Europe, Middle East & Africa and Latin America. The Asia Pacific region had the highest revenue share of the field programmable gate arrays market during the year 2022 and is expected to maintain its dominance throughout the forecasted period. China accounted for the largest revenue share in the region as a result of the government’s ongoing investments and initiatives to boost industry growth. For example, China established US$28.9 billion government-backed semiconductor fund to support the domestic chip industry. This initiative focuses on creating new market opportunities by developing FPGAs, core processing units, and memory chips.
  • North America held a significant share in the field programmable gate array (FPGA) market in 2022. The FPGA market in North America is a growing and dynamic industry, driven by technological advancements and increasing demand for high-performance computing. The demand for FPGAs in North America is driven by several factors. First, the region has a strong industrial base, with many companies in sectors such as aerospace, defense, and automotive using FPGAs for applications such as image processing, radar, and driver assistance systems. The North American FPGA market is gaining traction due to the region’s increasing adoption of smart factories and industrial automation. For instance, Schneider Electric opened its first smart factory in the US. It featured a range of products including an FPGA-based Human-Machine Interface (HMI), industrial control systems, industrial robots, and industrial communication devices.

Market Dynamics:

Growth Drivers:

One of the key drivers of the market’s expansion is the growth in increasing adoption of ADAS and in vehicle infotainment. ADAS and IVI systems rely heavily on high-performance processors that can handle complex algorithms and real-time data processing. FPGAs offer a flexible and high-performance solution for these requirements, making them an ideal choice for use in these applications. In ADAS, FPGAs are used to accelerate the processing of image and sensor data from cameras and radar systems. These systems use computer vision algorithms to analyze the data and detect objects on the road, such as other vehicles, pedestrians, and obstacles.

FPGAs can perform these computations in real-time, making them an essential component of ADAS systems. In IVI systems, FPGAs can be used for various functions such as processing high-definition video streams, controlling the infotainment system, and managing communication between different devices in the car. FPGAs also offer significant advantages over traditional processors, such as low latency and power consumption.

Therefore, the increasing adoption of ADAS and IVI systems are driving the growth of the FPGA market. Other significant growth factors of the market include growing demand for IoT, increasing penetration of 5G, increased use of FPGA in radio astronomy, rising adoption of FPGA in data centers, increasing demand for cyber security and growing finance, trading, and insurance sectors.

Challenges:

However, some challenges are impeding the growth of the market such as high costs and hidden bugs in FPGAs. Field-programmable gate arrays (FPGAs) are integrated circuits that can be programmed to perform specific functions, making them highly versatile in a variety of industries, including telecommunications, automotive, aerospace, and consumer electronics.

The high development costs associated with designing and programming FPGAs have been identified as a factor hampering the growth of the FPGA market. The development of FPGA involves a complex design process that requires a high level of expertise in digital circuit design and computer engineering. The initial design and programming of FPGA can be time-consuming and expensive, as it requires the use of specialized hardware and software tools.

Additionally, FPGAs often require customization for specific applications, which can add to the development costs. Moreover, the costs associated with producing FPGA-based systems can also be high due to the need for additional components and infrastructure to support the FPGA.

Trends:

The market is projected to grow at a fast pace during the forecast period, due to increasing proliferation of artificial intelligence (AI), integration of FPGA in cloud computing and Infrastructure-as-a-Service (IaaS), rising demand for FPGAs in high bandwidth devices, integration of FPGA in robotics and advancements in FPGA based embedded system technology. The proliferation of Artificial Intelligence (AI) is driving the growth of the Field-Programmable Gate Array (FPGA) market due to its ability to provide high-performance hardware acceleration for AI applications.

As AI algorithms become more complex, traditional processors struggle to keep up with the computational demands, leading to the need for specialized hardware that can handle the massive amounts of data that need to be processed. FPGAs are a type of programmable logic device that can be reconfigured to perform specific tasks, making them ideal for implementing custom logic designs for AI applications.

FPGAs are also highly parallel, allowing for the execution of multiple tasks simultaneously, which is critical for AI workloads that require massive parallelism. As the demand for AI applications grows, the FPGA market is expected to continue to expand, driven by the need for specialized hardware that can deliver high performance and low latency for these applications.

Competitive Landscape:

Global field programmable gate array (FPGA) market is highly consolidated in nature. Companies are focusing on R&D to develop technologically advanced products in order to gain competitive advantage, and they are also engaging in partnerships, mergers, and acquisitions in order to strengthen their product portfolio, manufacturing capacities, and provide competitive differentiation. For example, in April 2019, Intel Corporation acquired Omnitek, a provider of vision field programmable gate array IP solutions based in England.

The key players in the global field programmable gate array (FPGA) market are:

  • Intel Corporation
  • Lattice Semiconductor Corporation
  • QuickLogic Corporation
  • AMD (Xilinx, Inc.)
  • Microchip Technology Inc.
  • Achronix Semiconductor Corporation
  • Menta SAS
  • S2C
  • Gowin Semiconductor
  • Efinix, Inc.
  • Flex Logix Technologies, Inc.
  • Shanghai Anlogic Technology Co., Ltd.
  • NanoXplore SAS

Suppliers are adopting the fabless strategy, which allows them to gain access to fabrication facilities without incurring significant capital investment. Fabless firms can outsource FPGA production and devote their time, resources, and efforts to developing new ideas, conducting research, and improving their marketing tactics in order to increase their sales.

Key Topics Covered:

1. Executive Summary

2. Introduction

3. Global Market Analysis

4. Regional Market Analysis

5. Impact of Covid-19

6. Market Dynamics
6.1 Growth Drivers
6.1.1 Increasing Adoption of ADAS and in Vehicle Infotainment
6.1.2 Growing Demand for IoT
6.1.3 Increasing Penetration of 5G
6.1.4 Increased Use of FPGA in Radio Astronomy
6.1.5 Rising Adoption of FPGA in Data Centers
6.1.6 Increasing Demand for Cyber Security
6.1.7 Growing Finance, Trading, and Insurance Sectors
6.2 Challenges
6.2.1 High Costs
6.2.2 Hidden Bugs in FPGAs
6.3 Market Trends
6.3.1 Increasing Proliferation of Artificial intelligence (AI)
6.3.2 Integration of FPGA in Cloud Computing and Infrastructure-as-a-Service (IaaS)
6.3.3 Rising Demand for FPGAs in High Bandwidth Devices
6.3.4 Integration of FPGA in Robotics
6.3.5 Advancements in FPGA Based Embedded System Technology

7. Competitive Landscape

8. Company Profiles

For more information about this report visit https://www.researchandmarkets.com/r/vsuv26

About ResearchAndMarkets.com
ResearchAndMarkets.com is the world’s leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.


GlobeNewswire is one of the world's largest newswire distribution networks, specializing in the delivery of corporate press releases financial disclosures and multimedia content to the media, investment community, individual investors and the general public.

Artificial Intelligence

IBM, Government of Canada, Government of Quebec Sign Agreements to Strengthen Canada’s Semiconductor Industry

Published

on

ibm,-government-of-canada,-government-of-quebec-sign-agreements-to-strengthen-canada’s-semiconductor-industry

Up to $187M CAD to be invested to progress expansion of chip packaging capacity and capabilities and to strengthen R&D at IBM Canada’s Bromont plant
BROMONT, QC, April 26, 2024 /PRNewswire/ — IBM (NYSE: IBM), the Government of Canada, and the Government of Quebec today announced agreements that will strengthen Canada’s semiconductor industry, and further develop the assembly, testing and packaging (ATP) capabilities for semiconductor modules to be used across a wide range of applications including telecommunications, high performance computing, automotive, aerospace & defence, computer networks, and generative AI, at IBM Canada’s plant in Bromont, Quebec. The agreements reflect a combined investment valued at approximately $187M CAD.

“Today’s announcement is a massive win for Canada and our dynamic tech sector. It will create high-paying jobs, invest in innovation, strengthen supply chains, and help make sure the most advanced technologies are Canadian-made. Semiconductors power the world, and we’re putting Canada at the forefront of that opportunity,” said the Right Honourable Justin Trudeau, Prime Minister of Canada
In addition to the advancement of packaging capabilities, IBM will be conducting R&D to develop methods for scalable manufacturing and other advanced assembly processes to support the packaging of different chip technologies, to further Canada’s role in the North American semiconductor supply chain and expand and anchor Canada’s capabilities in advanced packaging.
The agreements also allow for collaborations with small and medium-sized Canadian-based enterprises with the intent of fostering the development of a semiconductor ecosystem, now and into the future.
“IBM has long been a leader in semiconductor research and development, pioneering breakthroughs to meet tomorrow’s challenges. With the demand for compute surging in the age of AI, advanced packaging and chiplet technology is becoming critical for the acceleration of AI workloads,” said Darío Gil, IBM Senior Vice President and Director of Research. “As one of the largest chip assembly and testing facilities in North America, IBM’s Bromont facility will play a central role in this future. We are proud to be working with the governments of Canada and Quebec toward those goals and to build a stronger and more balanced semiconductor ecosystem in North America and beyond.”
IBM Canada’s Bromont plant is one of North America’s largest chip assembly and testing facilities, having operated in the region for 52 years. Today, the facility transforms advanced semiconductor components into state-of-the-art microelectronic solutions, playing a key role in IBM’s semiconductor R&D leadership alongside IBM’s facilities at the Albany NanoTech Complex and throughout New York’s Hudson Valley. These agreements will help to further establish a corridor of semiconductor innovation from New York to Bromont. 
“Advanced packaging is a crucial component of the semiconductor industry, and IBM Canada’s Bromont plant has led the world in this process for decades,” said Deb Pimentel, president of IBM Canada. “Building upon IBM’s 107-year legacy of technology innovation and R&D in Canada, the Canadian semiconductor industry will now become even stronger, allowing for robust supply chains and giving Canadians steady access to even more innovative technologies and products. This announcement represents just one more example of IBM’s leadership and commitment to the country’s technology and business landscape.”
Chip packaging, the process of connecting integrated circuits on a chip or circuit board, has become more complex as electronic devices have shrunk and the components of chips themselves get smaller and smaller. IBM announced the world’s first 2 nanometer chip technology in 2021 and, as the semiconductor industry moves towards new methods of chip construction, advances in packaging will grow in importance. 
“Semiconductors are part of our everyday life. They are in our phones, our cars, and our appliances. Through this investment, we are supporting Canadian innovators, creating good jobs, and solidifying Canada’s semiconductor industry to build a stronger economy. Canada is set to play a larger role in the global semiconductor industry thanks to projects like the one we are announcing today. Because, when we invest in semiconductor and quantum technologies, we invest in economic security.”  — The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry
“This investment by IBM in Bromont will ensure that Quebec continues to stand out in the field of microelectronics. An increase in production capacity will solidify Quebec’s position in the strategic microelectronics sector in North America.” — The Honourable Pierre Fitzgibbon, Minister of Economy, Innovation and Energy, Minister responsible for Regional Economic Development and Minister responsible for the Metropolis and the Montreal region
About IBMIBM is a leading provider of global hybrid cloud and AI, and consulting expertise. We help clients in more than 175 countries capitalize on insights from their data, streamline business processes, reduce costs and gain the competitive edge in their industries. More than 4,000 government and corporate entities in critical infrastructure areas such as financial services, telecommunications and healthcare rely on IBM’s hybrid cloud platform and Red Hat OpenShift to affect their digital transformations quickly, efficiently and securely. IBM’s breakthrough innovations in semiconductors, AI, quantum computing, industry-specific cloud solutions and consulting deliver open and flexible options to our clients. All of this is backed by IBM’s legendary commitment to trust, transparency, responsibility, inclusivity and service. Visit www.ibm.com for more information. 
Media ContactLorraine BaldwinIBM [email protected] 
Willa HahnIBM [email protected]
Photo – https://mma.prnewswire.com/media/2397908/IBM_Canada_employee_at_the_IBM_Bromont_plant_holding_a_wafer.jpg
Logo – https://mma.prnewswire.com/media/95470/ibm_logo.jpg

View original content:https://www.prnewswire.co.uk/news-releases/ibm-government-of-canada-government-of-quebec-sign-agreements-to-strengthen-canadas-semiconductor-industry-302128212.html

Continue Reading

Artificial Intelligence

HITACHI ACQUIRES MA MICRO AUTOMATION OF GERMANY IN EFFORT TO ACCELERATE GLOBAL EXPANSION OF ROBOTIC SI BUSINESS IN THE MEDICAL AND OTHER FIELDS

Published

on

hitachi-acquires-ma-micro-automation-of-germany-in-effort-to-accelerate-global-expansion-of-robotic-si-business-in-the-medical-and-other-fields

HOLLAND, Mich., April 26, 2024 /PRNewswire/ — Hitachi Ltd. (TSE: 6501, “Hitachi”) has signed a stock purchase agreement on April 26 to acquire all shares of MA micro automation GmbH (“MA micro automation”, headquartered in St. Leon-Rot, Germany) from MAX Management GmbH (a subsidiary of MAX Automation SE). MA micro automation is a leading provider of robotic and automation technology (robotic SI) including high-speed linear handling systems, high-precision assembly lines, and high-speed vision inspection technology for Europe, North America, and Southeast Asia, for EUR 71.5M million. The transaction is expected to close in the second half of 2024, pending completion of the customary regulatory filings. After the acquisition is completed, MA micro automation will join JR Automation Technologies, LLC (“JR Automation”), a market leader in providing advanced automation solutions and digital technologies in the robotic system integration business for North America, Europe, and Southeast Asia as a continued effort to expand the company’s global presence.

MA micro automation is a technology leader for automation solutions within micro-assembly. Through its state-of-the-art proprietary high-speed and high-precision automation know-how, combined with unique optical image inspection capabilities, MA micro automation serves high-growth med-tech automation end-markets, covering the production, assembly, and testing medical and optical components including contact lenses, IVD and diabetes diagnostics consumables, and injection molding for medical use. The company was established in 2003 through a carve-out from Siemens*1 and since 2013 has been part of the MAX Automation group. 
JR Automation is a leading provider of intelligent automated manufacturing technology solutions, serving customers across the globe in a variety of industries including automotive, life sciences, e-mobility, consumer and industrial products. With over 20 locations between North America, Europe, and Southeast Asia, the leading integrator offers nearly 2 million square feet (185,806 sq. m) of available build and engineering floorspace. This acquisition allows JR Automation to further grow and strengthen both the company’s geographical footprint and their continued commitment on expanding support capabilities within the European region and medical market vertical.
“MA micro automation provides engineering, build and support expertise with established capabilities in complex vision applications, high-speed and high-precision automation technologies. When integrated with JR Automation’s uniform global process and digital technologies, this partnership will further enhance our ability to deliver added value and support to all of our customers worldwide and continue to grow our capabilities in the medical market,” says Dave DeGraaf, CEO of JR Automation. “As we integrate this new dimension, impressive talents and abilities of the MA micro automation team we further enhance our ability to serve our customers, creating a more robust and globally balanced offering.”
With this acquisition, Hitachi aims to further enhance its ability to provide a “Total Seamless Solution*2” to connect manufacturer’s factory floors seamlessly and digitally with their front office data, allowing them to achieve total optimization and bringing Industry 4.0 to life. This “Total Seamless Solution” strategy links organizations’ operational activities such as engineering, supply chain, and purchasing to the plant floor and allows for real time, data-driven decision-making that improves the overall business value for customers.
Kazunobu Morita, Vice President and Executive Officer, CEO of Industrial Digital Business Unit, Hitachi, Ltd. says, “We are very pleased to welcome MA micro automation to the Hitachi Group. The team is based in Europe, providing robotic SI to global medical device manufacturing customers with its high technological capabilities and will join forces with JR Automation and Hitachi Automation to strengthen our global competitiveness. Hitachi aims to enhance its ability to provide value to customers and grow alongside them by leveraging its strengths in both OT, IT, including robotic SI, and “Total Seamless Solution” through Lumada*3’s customer co-creation framework.”
Joachim Hardt, CEO MA micro automation GmbH says, “Following the successful establishment and growth of MA micro automation within the attractive automation market for medical technology products, we are now opening a new chapter. Our partnership with Hitachi will not only strengthen our global competitive position, but we will also benefit from joint technological synergies and a global market presence.  We look forward to a synergistic partnership with Hitachi and JR Automation.”
Outline of MA micro automation    
Name
MA micro automation GmbH
Head Office
St. Leon-Rot, Germany
Representative
Joachim Hardt (CEO)
Outline of Business
Automation solutions within micro-assembly
Total no. of Employees:
Approx. 200 (As of April 2024)
Founded
2003
Revenues (2023)
€ 46.5 million
Website

Home


*1
“Siemens” is a registered trademark or trademark of Siemens Trademark GmbH & Co. KG in the U.S. and other countries.
*2
“Total Seamless Solution” is a registered trademark of Hitachi, Ltd. in the U.S. and Japan.
*3
Lumada: A collective term for solutions, services and technologies based on Hitachi’s advanced digital technologies for creating value from customers’ data accelerating digital innovation. https://www.hitachi.com/products/it/lumada/global/en/index.html
About JR AutomationEstablished in 1980, JR Automation is a leading provider of intelligent automated manufacturing technology solutions that solve customers’ key operational and productivity challenges. JR Automation serves customers across the globe in a variety of industries, including automotive, life sciences, aerospace, and more.  
In 2019, JR Automation was acquired by Hitachi, Ltd. In a strategic effort towards offering a seamless connection between the physical and cyber space for industrial manufacturers and distributers worldwide. With this partnership, JR Automation provides customers a unique, single-source solution for complete integration of their physical assets and data information, offering greater speed, flexibility, and efficiencies towards achieving their Industry 4.0 visions. JR Automation employs over 2,000 people at 21 manufacturing facilities in North America, Europe, and Asia.  For more information, please visit www.jrautomation.com.   
About Hitachi, Ltd.Hitachi drives Social Innovation Business, creating a sustainable society through the use of data and technology. We solve customers’ and society’s challenges with Lumada solutions leveraging IT, OT (Operational Technology) and products. Hitachi operates under the 3 business sectors of “Digital Systems & Services” – supporting our customers’ digital transformation; “Green Energy & Mobility” – contributing to a decarbonized society through energy and railway systems, and “Connective Industries” – connecting products through digital technology to provide solutions in various industries. Driven by Digital, Green, and Innovation, we aim for growth through co-creation with our customers. The company’s revenues as 3 sectors for fiscal year 2023 (ended March 31, 2024) totaled 8,564.3 billion yen, with 573 consolidated subsidiaries and approximately 270,000 employees worldwide. For more information on Hitachi, please visit the company’s website at https://www.hitachi.com.
Photo – https://mma.prnewswire.com/media/2398552/CENTAURI_IVD_Platform.jpg Logo – https://mma.prnewswire.com/media/2392427/4673549/JR_Automation_and_Hitachi_Combined_Mark_full_color_Logo.jpg
 

View original content:https://www.prnewswire.co.uk/news-releases/hitachi-acquires-ma-micro-automation-of-germany-in-effort-to-accelerate-global-expansion-of-robotic-si-business-in-the-medical-and-other-fields-302128612.html

Continue Reading

Artificial Intelligence

$10 million Artificial Intelligence Mathematical Olympiad Prize appoints further advisory committee members

Published

on

$10-million-artificial-intelligence-mathematical-olympiad-prize-appoints-further-advisory-committee-members

D. Sculley, Kevin Buzzard, Leo de Moura, Lester Mackey and Peter J. Liu appointed to the advisory committee for the Artificial Intelligence Mathematical Olympiad Prize.
LONDON, April 26, 2024 /PRNewswire/ — XTX Markets’ newly created Artificial Intelligence Mathematical Olympiad Prize (‘AIMO Prize’) is a $10mn challenge fund designed to spur the creation of a publicly shared AI model capable of winning a gold medal in the International Mathematical Olympiad (IMO).

XTX Markets is delighted to announce the appointment of five further advisory committee members. This group brings great expertise in machine learning, including D. Sculley, the CEO of Kaggle; Lester Mackey, a Principal Researcher at Microsoft Research and a Macarthur Fellow; and Peter J. Liu, a research scientist at Google DeepMind.
Prolific mathematicians Kevin Buzzard, who achieved a perfect score in the International Mathematical Olympiad, and Leo De Moura who is the Chief Architect for Lean, the automated reasoning tool, also join the advisory group.
They join the existing advisory committee members Terence Tao and Timothy Gowers, both winners of the Fields Medal, as well as Dan Roberts, Geoff Smith and Po-Shen Loh.
The AIMO Advisory Committee will support the development of the AIMO Prize, including advising on appropriate protocols and technical aspects, and designing the various competitions and prizes.
Simon Coyle, Head of Philanthropy at XTX Markets, commented:
“We are thrilled to complete the AIMO Advisory Committee with the appointments of D., Kevin, Leo, Lester and Peter. Together, they have enormous experience in machine learning and automated reasoning and are already bringing expertise and wisdom to the AIMO Prize. We look forward to announcing the winners of the AIMO’s first Progress Prize soon, and then publicly sharing the AI models to support the open and collaborative development of AI.”
Further information on the AIMO Prize
There will be a grand prize of $5mn for the first publicly shared AI model to enter an AIMO approved competition and perform at a standard equivalent to a gold medal in the IMO. There will also be a series of progress prizes, totalling up to $5mn, for publicly shared AI models that achieve key milestones towards the grand prize.
The first AIMO approved competition opened to participants in April 2024 on the Kaggle competition platform. The first progress prize focuses on problems pitched at junior and high-school level maths competitions. There is a total prize pot of $1.048m for the first progress prize, of which at least $254k will be awarded in July 2024, There will be a presentation of progress held in Bath, England in July 2024, as part of the 65th IMO.
For more information on the AIMO Prize visit: https://aimoprize.com/ or the competition page on Kaggle: https://www.kaggle.com/competitions/ai-mathematical-olympiad-prize/
Advisory Committee member profiles:
D. Sculley
D. is the CEO at Kaggle. Prior to joining Kaggle, he was a director at Google Brain, leading research teams working on robust, responsible, reliable and efficient ML and AI. In his career in ML, he has worked on nearly every aspect of machine learning, and has led both product and research teams including those on some of the most challenging business problems. Some of his well-known work involves ML technical debt, ML education, ML robustness, production-critical ML, and ML for scientific applications such as protein design.
Kevin Buzzard
Kevin a professor of pure mathematics at Imperial College London, specialising in algebraic number theory. As well as his research and teaching, he has a wide range of interests, including being Deputy Head of Pure Mathematics, Co-Director of a CDT and the department’s outreach champion. He is currently focusing on formal proof verification, including being an active participant in the Lean community. From October 2024, he will be leading a project to formalise a 21st century proof of Fermat’s Last Theorem. Before joining Imperial, some 20 years ago, he was a Junior Research Fellow at the University of Cambridge, where he had previously been named ‘Senior Wrangler’ (the highest scoring undergraduate mathematician). He was also a participant in the International Mathematical Olympiad, winning gold with a perfect score in 1987. He has been a visitor at the IAS in Princeton, a visiting lecturer at Harvard, has won several prizes both for research and teaching, and has given lectures all over the world.
Leo de Moura
Leo is a Senior Principal Applied Scientist in the Automated Reasoning Group at AWS. In his spare time, he dedicates himself to serving as the Chief Architect of the Lean FRO, a non-profit organization that he proudly co-founded alongside Sebastian Ullrich. He is also honoured to hold a position on the Board of Directors at the Lean FRO, where he actively contributes to its growth and development. Before joining AWS in 2023, he was a Senior Principal Researcher in the RiSE group at Microsoft Research, where he worked for 17 years starting in 2006. Prior to that, he worked as a Computer Scientist at SRI International. His research areas are automated reasoning, theorem proving, decision procedures, SAT and SMT. He is the main architect of several automated reasoning tools: Lean, Z3, Yices 1.0 and SAL. Leo’s work in automated reasoning has been acknowledged with a series of prestigious awards, including the CAV, Haifa, and Herbrand awards, as well as the Programming Languages Software Award by the ACM. Leo’s work has also been reported in the New York Times and many popular science magazines such as Wired, Quanta, and Nature News.
Lester Mackey
Lester Mackey is a Principal Researcher at Microsoft Research, where he develops machine learning methods, models, and theory for large-scale learning tasks driven by applications from climate forecasting, healthcare, and the social good. Lester moved to Microsoft from Stanford University, where he was an assistant professor of Statistics and, by courtesy, of Computer Science. He earned his PhD in Computer Science and MA in Statistics from UC Berkeley and his BSE in Computer Science from Princeton University. He co-organized the second place team in the Netflix Prize competition for collaborative filtering; won the Prize4Life ALS disease progression prediction challenge; won prizes for temperature and precipitation forecasting in the yearlong real-time Subseasonal Climate Forecast Rodeo; and received best paper, outstanding paper, and best student paper awards from the ACM Conference on Programming Language Design and Implementation, the Conference on Neural Information Processing Systems, and the International Conference on Machine Learning. He is a 2023 MacArthur Fellow, a Fellow of the Institute of Mathematical Statistics, an elected member of the COPSS Leadership Academy, and the recipient of the 2023 Ethel Newbold Prize.
Peter J. Liu
Peter J. Liu is a Research Scientist at Google DeepMind in the San Francisco Bay area, doing machine learning research with a specialisation in language models since 2015 starting in the Google Brain team. He has published and served as area chair in top machine learning and NLP conferences such as ICLR, ICML, NEURIPS, ACL and EMNLP. He also has extensive production experience, including launching the first deep learning model for Gmail Anti-Spam, and using neural network models to detect financial fraud for top banks. He has degrees in Mathematics and Computer Science from the University of Toronto.
About XTX Markets:
XTX Markets is a leading financial technology firm which partners with counterparties, exchanges and e-trading venues globally to provide liquidity in the Equity, FX, Fixed Income and Commodity markets. XTX has over 200 employees based in London, Paris, New York, Mumbai, Yerevan and Singapore. XTX is consistently a top 5 liquidity provider globally in FX (Euromoney 2018-present) and is also the largest European equities (systematic internaliser) liquidity provider (Rosenblatt FY: 2020-2023).
The company’s corporate philanthropy focuses on STEM education and maximum impact giving (alongside an employee matching programme). Since 2017, XTX has donated over £100mn to charities and good causes, establishing it as a major donor in the UK and globally.
In a changing world XTX Markets is at the forefront of making financial markets fairer and more efficient for all.
 

View original content:https://www.prnewswire.co.uk/news-releases/10-million-artificial-intelligence-mathematical-olympiad-prize-appoints-further-advisory-committee-members-302128542.html

Continue Reading

Trending