Connect with us
MARE BALTICUM Gaming & TECH Summit 2024

Artificial Intelligence

Global Automotive Product Lifecycle Management Software Market Report 2023: Adoption of Digitalization to Improve Production Drives Growth

Published

on

Dublin, June 22, 2023 (GLOBE NEWSWIRE) — The “Global Automotive Product Lifecycle Management Software Market 2023-2028 by Deployment Mode, Company Size, Industry Vertical, and Geography, Competitive Analysis, Impact of Covid-19 and Ansoff Analysis” report has been added to ResearchAndMarkets.com’s offering.

The Global Automotive Product Lifecycle Management Software Market is estimated to be USD 28.41 Bn in 2023 and is expected to reach USD 38.81 Bn by 2028, growing at a CAGR of 6.44%.

Automotive Product Lifecycle Management (PLM) software is a set of tools and solutions that enable automotive manufacturers and suppliers to manage the entire lifecycle of their products, from conception to end-of-life. This includes the design and development of new products, testing and validation, manufacturing planning and control, supply chain management, and after-sales services.

The global automotive product lifecycle management software market is driven by several factors, including the increasing complexity of automotive products, the growing demand for customized and connected vehicles, and the need for improved collaboration and efficiency across the automotive supply chain.

With the help of PLM software, automotive companies can streamline their product development processes, reduce costs, improve quality and reliability, and bring new products to market faster. The global automotive PLM software market includes a range of solutions and services, including computer-aided design (CAD) software, product data management (PDM) software, computer-aided manufacturing (CAM) software, simulation and analysis tools, supply chain management (SCM) software, and after-sales service management software.

These solutions are used by automotive manufacturers and suppliers of all sizes, ranging from small component manufacturers to large multinational corporations.

The global automotive PLM software market is driven by several factors, including the increasing complexity of automotive products, the growing demand for customized and connected vehicles, and the need for improved collaboration and efficiency across the automotive supply chain. The market is also driven by the adoption of advanced technologies like artificial intelligence, machine learning, and digital twins, which can further enhance the capabilities of PLM software.

Competitive Quadrant

The report includes a Competitive Quadrant, a proprietary tool to analyze and evaluate the position of companies based on their Industry Position score and Market Performance score. The tool uses various factors for categorizing the players into four categories. Some of these factors considered for analysis are financial performance over the last 3 years, growth strategies, innovation score, new product launches, investments, growth in market share, etc.

Ansoff Analysis

The report presents a detailed Ansoff matrix analysis for the Global Automotive Product Lifecycle Management Software Market. Ansoff Matrix, also known as Product/Market Expansion Grid, is a strategic tool used to design strategies for the growth of the company. The matrix can be used to evaluate approaches in four strategies viz. Market Development, Market Penetration, Product Development, and Diversification. The matrix is also used for risk analysis to understand the risk involved with each approach.

The analyst analyses the Global Automotive Product Lifecycle Management Software Market using the Ansoff Matrix to provide the best approaches a company can take to improve its market position.

Based on the SWOT analysis conducted on the industry and industry players, The analyst has devised suitable strategies for market growth.

Why buy this report?

  • The report offers a comprehensive evaluation of the Global Automotive Product Lifecycle Management Software Market. The report includes in-depth qualitative analysis, verifiable data from authentic sources, and projections about market size. The projections are calculated using proven research methodologies.
  • The research report also provides a detailed market size analysis and projections in volume and value terms. The projections are calculated using verified research methodologies.
  • Excel data sheet for the market size will also be provided with the report.
  • The report has been compiled through extensive primary and secondary research. The primary research is done through interviews, surveys, and observation of renowned personnel in the industry.
  • The report includes an in-depth market analysis using Porter’s 5 forces model, PESTLE Analysis, and the Ansoff Matrix. In addition, the impact of COVID-19 on the market is also featured in the report.
  • The report includes the regulatory scenario in the industry, which will help you make a well-informed decision. The report discusses major regulatory bodies and major rules and regulations imposed on this sector across various geographies.
  • The report includes Self-Assessment Form, which helps customers evaluate their position in the market compared to their competitors.
  • The report offers customized research – tailored uniquely to our customers with a quick turnaround time. We offer a 15% customization option at no extra charge to all our clients for any of our syndicated reports.

Key Attributes:

Report Attribute Details
No. of Pages 142
Forecast Period 2023 – 2028
Estimated Market Value (USD) in 2023 $28.41 Billion
Forecasted Market Value (USD) by 2028 $38.81 Billion
Compound Annual Growth Rate 6.4%
Regions Covered Global

Companies Mentioned

  • Accenture plc
  • Agile PLM Inc.
  • Altair Engineering, Inc.
  • ANSYS Inc.
  • Aras Corp.
  • Arena Solutions, Inc.
  • Autodesk, Inc.
  • Gerber Technology LLC
  • IBM Corp.
  • Infor, Inc.
  • Oracle Corp.
  • Parametric Technology Corp. (PTC)
  • PTC Inc.
  • SAP SE
  • Siemens Ag
  • Tech Mahindra Ltd.
  • T-Systems International GmbH

Market Dynamics

Drivers

  • Growing Demand for Efficient Product Development Processes
  • Adoption of Digitalization to Improve Production
  • Need to Cut Costs and Improve Productivity in the Automotive Industry

Restraints

  • High Cost of PLM Software
  • Lack of Awareness about PLM Solutions in Emerging Economies
  • Integration Challenges with Existing Systems

Opportunities

  • Rising Demand for Specialized PLM Solutions for Different Automotive Segments
  • Introduction of Cloud Technology to Consolidate the Information

Challenges

  • Rapidly Evolving Market Leading to Increased Competition
  • Lack of Interoperability among Dissimilar Product Versions
  • Need for Continuous Innovation to Keep up with Changing Customer Demands

Market Segmentation

The Global Automotive Product Lifecycle Management Software Market is segmented based on Deployment Mode, Company Size, Industry Vertical, and Geography.

  • By Deployment Mode, this segment looks at the different ways in which product lifecycle management software is deployed, such as on-premises or cloud-based. For example, automotive companies may choose to use cloud-based software to improve collaboration across teams and reduce IT costs.
  • By Company Size, this segment considers the size of the companies that use product lifecycle management software, such as small and medium-sized enterprises (SMEs) or large enterprises. For example, SMEs may use product lifecycle management software to improve their product development processes and compete with larger companies.
  • By Industry Vertical, this segment looks at the different industry verticals that use product lifecycle management software, such as automotive, aerospace and defense, and healthcare. For example, automotive companies may use product lifecycle management software to manage their supply chain and reduce costs.
  • By Geography, the market is classified into the Americas, EMEA, and APAC. Americas is expected to hold the largest market share due to the presence of major automotive manufacturers and suppliers in the region, such as General Motors, Ford, and Delphi Technologies. The region is also expected to witness significant growth due to the increasing demand for electric vehicles and connected cars.

For more information about this report visit https://www.researchandmarkets.com/r/xkiwen

About ResearchAndMarkets.com
ResearchAndMarkets.com is the world’s leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

Attachment


GlobeNewswire is one of the world's largest newswire distribution networks, specializing in the delivery of corporate press releases financial disclosures and multimedia content to the media, investment community, individual investors and the general public.

Artificial Intelligence

Elevate Your Virtual Reality Experience with KIWI design RGB Vertical Stand, Now Available on Meta’s Website

Published

on

elevate-your-virtual-reality-experience-with-kiwi-design-rgb-vertical-stand,-now-available-on-meta’s-website

LOS ANGELES, May 11, 2024 /PRNewswire/ — Top-tier VR accessories provider KIWI design has launched its latest product, the RGB Vertical Stand. This Meta-authorized accessory, designed to deepen users’ immersion in the metaverse, is now available on the official Meta website.

“KIWI design’s commitment to pushing the boundaries of virtual reality accessories takes another leap forward with the introduction of our new products,” said Ray,the CEO of KIWI design. “We are always dedicated to bringing innovative upgrades to VR device accessories, with the goal of enriching users’ virtual reality experiences.”
The newly launched RGB Vertical Stand features a user-friendly modular design with push-in assembly, making it easy to set up and use. It is compatible with Meta Quest 3, Quest 2, and Quest Pro, ensuring widespread usability. With a magnetic USB Type-C connector, it provides an effortless way to charge and display your headset. Users can also customize their display with 16 pre-set ambient multicolor RGB light options.
With VR technology constantly evolving, users are seeking more immersive experiences. As a leading manufacturer of VR accessories, KIWI design is committed to enhancing the user experience, through unique product designs. Since its establishment in 2015, KIWI design has acquired over 100 patents and has a diverse product lineup, including head straps, facial interfaces, VR stands, charging accessories, and controller grip covers.
KIWI design has also actively participated in the Made for Meta program, which is provided by Meta to strengthen its partnerships with leading brands to deliver accessories that enhance Meta products with more choice and a richer experience for everyone. KIWI design’s participation in this program validates its high-quality design standards.
The RGB Vertical Stand for Meta Quest 3, Quest 2, and Quest Pro and another specially designed authorized charging dock for the Meta  Oculus Quest 2 are now available for purchase on both KIWI design’s website and Amazon. For more information about our brand and products, please visit our website and follow KIWI design on Facebook, Instagram, X, YouTube and TikTok.
https://www.kiwidesign.com/
https://www.facebook.com/KIWIdesignOfficial
https://www.instagram.com/kiwidesignins/

https://www.youtube.com/channel/UCOzFWarIschBuBfNz01Oucw
TikTok – Make Your Day
Photo – https://mma.prnewswire.com/media/2410344/image.jpg

View original content:https://www.prnewswire.co.uk/news-releases/elevate-your-virtual-reality-experience-with-kiwi-design-rgb-vertical-stand-now-available-on-metas-website-302142936.html

Continue Reading

Artificial Intelligence

WIO Taps Gracenote to Revolutionize Television Broadcast Reporting

Published

on

wio-taps-gracenote-to-revolutionize-television-broadcast-reporting

LOS ANGELES, May 11, 2024 /PRNewswire/ — WIO LLC, parent company of the global TV broadcast airings platform, WIOpro™, has announced a new strategic agreement with Gracenote, the global content data business unit of Nielsen, to address the longstanding challenge of accurately tracking and collecting music royalties generated by broadcast television and digital programming, With this agreement, WIO will integrate Gracenote TV program metadata and show airings into its WIOpro™ (“When’s It On – Professional”) platform enabling performance rights organizations, copyright management organizations and other entities to better monitor broadcast schedules and identify when royalties have been earned.

By integrating Gracenote historical program data into WIOpro’s new LookBack™ feature, WIO is enhancing its reporting capabilities and empowering Collection Societies, Rights Management Companies and the royalty-earning community to more easily monitor and export broadcast airings and better understand collections opportunities.
“At WIO, we are committed to empowering collection societies and copyright holders around the world with our platform tools and unprecedented access to the best and most accurate television broadcast and streaming data available,” said Shawn Pierce, Co-Founder and CEO of WIO LLC. “We have enjoyed an incredible relationship with Gracenote for 10 years. With the solidification of this agreement, we are able to deliver an unrivaled dataset to the royalty and residual community in a way that has not been offered before.” said Adam Shafron, Co-Founder and CTO of WIO LLC.
“WIO’s platform developed to solve the difficult matter of royalty tracking only becomes more powerful based on the integration of accurate, timely and comprehensive Gracenote metadata,” said Scott Monahan, Director, Strategic Partnerships, Gracenote. “We look forward to the combination of WIOpro’s technology and Gracenote’s program metadata delivering on the promise of transforming music royalty collection so that rights holders can be fairly compensated for use of their work.”
WIO and Gracenote will be at the MusicBiz 2024 conference in Nashville, TN May 13 – 16. Contact Dave Pelman, COO of WIO LLC at [email protected] for media queries or to book an appointment for a product demonstration.
About WIO:WIO is a technology company dedicated to providing broadcast television and digital programming data tailored specifically for the royalty and residual collection industry. Through its platform WIOpro (wiopro.com), users obtain access to real-time broadcast insights, reporting and curated data delivery.
About Gracenote:Gracenote is the content data business unit of Nielsen providing entertainment metadata, connected IDs and related offerings to the world’s leading creators, distributors and platforms. Gracenote enables advanced content navigation and discovery capabilities helping individuals easily connect to the TV shows, movies, music, podcasts and sports they love while delivering powerful content analytics making complex business decisions simpler.
Logo – https://mma.prnewswire.com/media/2410159/wio_gracenote.jpg
Logo – https://mma.prnewswire.com/media/2410160/powered_by_gracenote_logo.jpg

View original content:https://www.prnewswire.co.uk/news-releases/wio-taps-gracenote-to-revolutionize-television-broadcast-reporting-302142826.html

Continue Reading

Artificial Intelligence

IDTechEx Explores Printed Electronics in Electrified and Autonomous Mobility

Published

on

idtechex-explores-printed-electronics-in-electrified-and-autonomous-mobility

BOSTON, May 10, 2024 /PRNewswire/ — Electrification, autonomy, and vehicle ownership saturation are causing a technological revolution in the automotive sector. These automotive meta-trends are driving drastic changes in electronic component requirements and present a high-volume opportunity for printed electronics to capitalize on.

Historically, printed electronics technologies have nurtured a close relationship with the automotive sector, with printed force sensors pioneering passenger safety through seat occupancy and seatbelt detection. As such, the automotive sector continues to represent the lion’s share of the global printed and flexible sensor market, which IDTechEx’s report on the topic evaluates as worth US$421M in 2024. However, if the automotive sector is to continue to be a reliable revenue stream, printed electronics technology providers must adapt to address the emerging technical challenges facing future mobility.
Augmenting autonomous vehicles with printed electronics
As vehicle autonomy levels advance, the increasing number and distribution of spatial mapping sensors required will need continuous performance improvements to ensure passenger safety. Emerging printed electronics technologies can augment these sensors, extending detection bandwidth and maximizing reliability during operation.
Transparent conductive films (TCFs) are being developed to heat and defog LiDAR sensor panels, ensuring the function is unperturbed by external environmental conditions. Properties such as high transparency and low haze are important for defogging. These properties can be easily tuned using the wide variety of material options available for TCFs, including carbon nanotubes and silver nanowires.
IDTechEx identifies printed heating as a leading application of transparent conductive films. This is attributed to diminishing growth prospects in capacitive touch sensing applications. Innovations in thin film coating techniques have enabled indium tin oxide (ITO) to dominate touch sensing applications, all but displacing TCFs completely.
Looking towards the future, printed electronics technologies could play a more active role in advanced autonomous driving. Emerging semiconductive materials, such as quantum dots, printed directly onto conventional silicon image sensor arrays can extend detection range and sensitivity deeper into the infrared region. Augmenting existing image sensor technology with enhanced spectral range could facilitate the competition of hybrid silicon sensors with established InGaAs detectors.
Printed sensors promise granularized battery health monitoring
Vehicle electrification is driving the sustained development and evolution of electronic management systems, particularly in the battery and electric drivetrain. A strong market pull exists for technologies that increase vehicle efficiency, range, and lifetime while reducing recharge times.
Printed pressure and temperature sensors measure battery cell swelling and thermal profiles, providing granularized physical data that can be used to optimize battery deployment and recharging. Moreover, hybrid printed sensors that combine integrated printed heating elements promise a solution to actively address battery temperature. IDTechEx estimates that printed sensor-enabled battery deployment and charging optimizations could be worth up to US$3000 in savings per vehicle.
There remains uncertainty about whether electrification trends will correspond to increased demand for physical sensors in electric vehicle batteries, owing to the utility of existing electronic readouts for managing deployment. Virtual sensors also pose a threat, where AI-enabled software models interpret data to predict and emulate physical sensor functions without the need for discreet components. However, emerging regulations regarding safety and sensor redundancy will likely favor measurable metrics and see automotive makers continue to adopt physical sensors. IDTechEx predicts that virtual sensors are unlikely to displace their physical counterparts – so long as low-cost sensors remain widely available.
Embedding printed electronics in the car of the future
IDTechEx predicts that global car sales will saturate over the next decade, with automakers increasingly looking for premium features and technical innovations to differentiate themselves from the competition. In-cabin technologies will be highly desirable – as the location where passengers reside and interact with the vehicle the most.
Lighting elements are emerging as a prominent differentiator, described as “the new chrome” by Volkswagen’s chief designer. The use of in-mold structural electronics (IMSE) enables the integration of embedded lighting elements using existing manufacturing processes. 3D electronics technologies are intrinsically attractive for automotive integration, as functional layers are conformable and lightweight while easily embedded within existing aesthetic elements.
Despite strong tailwinds, the adoption of in-mold electronics within automotive interiors has been sluggish. This is attributed to the challenges of meeting automotive qualification requirements, as well as stiff competition with less sophisticated alternatives such as applying functional films to thermoformed parts. Nevertheless, momentum is building, with technology providers like Tactotek partnering with Mercedes-Benz and Stallantis to progress the automotive validation of IMSE to TRL5.
Outlook for printed electronics in automotive applications
Just as printed force sensors heralded early passenger safety systems, printed electronics technology is poised to underpin next-generation innovations for the car of the future. But this time, the competition will be stiff. Critical cost requirements must be met, while desirable new functionality must address existing challenges faced by manufacturers. Printed electronics can play a role in supporting emerging electrified and autonomous mobility, such as augmenting LiDAR sensors or optimizing electric battery deployment. Demand for technologies that enhance passenger experience and vehicle aesthetics will continue to grow, and printed electronics can supply low-power, lightweight lighting solutions for these.
Sustained engagement from tier suppliers and manufacturers continues to make the automotive sector key to printed sensor market growth opportunities – a total market IDTechEx predicts will reach US$960M by 2034. Strong partnerships between material providers and printed electronics technology providers are complementary to those of the highly vertically integrated automotive value chains between tier suppliers and OEMs. Leveraging printing techniques to provide solutions that slot into existing manufacturing processes and designs will be crucial. In the medium term, the printed electronics technologies most likely to realize revenue potential are those that can adapt to service emerging challenges already known to the automotive industry.
For more information on IDTechEx’s research on this topic, please see their report, “Printed and Flexible Sensors 2024-2034: Technologies, Players, Markets”. Downloadable sample pages are available for this report.
For the full portfolio of printed and flexible electronics market research from IDTechEx, please visit www.IDTechEx.com/Research/PE.
About IDTechEx:
IDTechEx provides trusted independent research on emerging technologies and their markets. Since 1999, we have been helping our clients to understand new technologies, their supply chains, market requirements, opportunities and forecasts. For more information, contact [email protected] or visit www.IDTechEx.com. 
Image download:
https://www.dropbox.com/scl/fo/26ylbecu6ztl4larjuycj/AFbRjqvsovp8yj-f9JOQLEg?rlkey=4e2lb1pqbl9rsfzp73bunm57j&st=t60swtdx&dl=0 
Media Contact:
Lucy RogersSales and Marketing [email protected] +44(0)1223 812300
Social Media Links:
Twitter: www.twitter.com/IDTechExLinkedIn: www.linkedin.com/company/IDTechEx
Photo – https://mma.prnewswire.com/media/2408851/IDTechEx_applications.jpg

View original content:https://www.prnewswire.co.uk/news-releases/idtechex-explores-printed-electronics-in-electrified-and-autonomous-mobility-302141570.html

Continue Reading

Trending