Connect with us
MARE BALTICUM Gaming & TECH Summit 2024

Artificial Intelligence

Virtual Reality in Manufacturing Industry to Rise at a Staggering 39.2% CAGR; Increasing Number of Product Launches to Provide Impetus to Growth, says Fortune Business Insights

Published

on

Virtual_Reality_in_Manufacturing_Industry

 

The global Virtual Reality in Manufacturing Industry will derive growth from recent product advances. According to a report published by Fortune Business Insights, titled “Virtual Reality in Manufacturing Industry Size, Share & Industry Analysis, By Component (Hardware, Software, Content), By Application (Product Design and Development, Safety and Training, Maintenance and Repair, and Communication & Collaboration), and Regional Forecast, 2019-2026,” the market size was was USD 924.7 million in 2018 and is projected to reach USD 14,887.0 million by 2026, exhibiting a CAGR of 39.2% during the forecast period.

A manufacturing process involves everything from design, prototype, and developing the final product. In such circumstances, there are several possibilities of error. For any manufacturing business, the end product should not possess any defects or errors. As a result, there is a need for incorporating concepts that will bode well in initial stages. Automated concepts such as artificial intelligence and the internet of things (IoT) have been a hit among manufacturers across the world. The advent of real-time concepts such as virtual and augmented reality have opened the doors for several possibilities. Virtual reality is one such concept that has helped overcome several downfalls that were initially present in the manufacturing industry. The use of virtual reality in manufacturing performing repetitive tasks that initially required continuous manual labour, has stood out among all. The demand for virtual reality (VR)-integrated concepts has risen among major business across the world. The increasing demand for this concept, coupled with the high precision and accuracy, will have a positive impact on the Virtual Reality in Manufacturing Industry in the coming years.

To gain more insights into the market with detailed table of content and figures, click here:
https://www.fortunebusinessinsights.com/industry-reports/virtual-reality-vr-in-manufacturing-industry-101714


The report focuses on several aspects of the market, with primary focus on aspects such as leading products, major companies, and ongoing trends. It highlights products that have witnessed the highest demand in recent years and their subsequent impact on the market. Additionally, the report encompasses several factors that have constituted an increase in the Virtual Reality in Manufacturing Industry size in recent years.

Increasing Number of Product Launches to Aid Growth

Among all factors that have contributed to the growth of the market, the increasing number of product launches have had a comparatively high impact than the others. In May 2015, Eon Reality Inc. announced the launch of a new product under its VR in manufacturing portfolio. The Eon World Builder system allows design and development of a system, as per the requirement of the user. The product is integrated with mobile OS platforms such as android and IOS and is included under the Experience VR EON Library. The report discusses the impact of this product on the company and summarizes how it has influenced the market on a global scale.

North America to Emerge Dominant; Established IT Infrastructure to Provide Impetus to Growth

The report segments the market on the basis of regional demographics into North AmericaLatin AmericaEuropeAsia Pacific, and the Middle East and Africa. Among these regions, the market in North America is projected to emerge dominant. The presence of a well-established IT infrastructure has established the platform for early adoption of latest technologies. As of 2018, the market in North America was worth USD 359.5 million. Besides North AmericaAsia Pacific will witness considerable growth, driven by growing incorporation of VR-integrated technologies in several countries across this region.


Request a Sample Copy: https://www.fortunebusinessinsights.com/enquiry/sample/virtual-reality-vr-in-manufacturing-industry-101714


List of the leading companies that are operating in the Virtual Reality in Manufacturing Industry are:

  • Unity Technologies
  • Microsoft
  • Google
  • Sony
  • HTC Corporation
  • Samsung
  • Facebook Technologies, LLC.
  • EON Reality, Inc.
  • Magic Leap, Inc.
  • WorldViz
  • NextVR Inc.
  • NVIDIA Corporation
  • Virtuix
  • Groove Jones LLC

Key Industry Developments:

November 2016HTC and Autodesk announced a collaboration, with a view to creating an integrated system for designers to create and model. The system will work on a cloud integrated engine, thereby accounting for higher efficiency.


Have Any Query? Ask Our Experts:
 https://www.fortunebusinessinsights.com/enquiry/speak-to-analyst/virtual-reality-vr-in-manufacturing-industry-101714


Table of Content

  • Introduction
    • Definition, By Segment
    • Research Approach
    • Sources
  • Executive Summary
  • Market Dynamics
    • Drivers, Restraints and Opportunities
    • Emerging Trends
  • Key Insights
    • Macro and Micro Economic Indicators
    • Consolidated SWOT Analysis of Key Players
  • Global Virtual Reality in Manufacturing Industry Analysis, Insights and Forecast, 2015-2026
    • Key Findings / Summary
    • Market Size Estimates and Forecasts
      • By Component (Value)
        • Hardware
        • Software
        • Content
      • By Application (Value)
        • Product Design and Development
        • Safety and Training
        • Maintenance and Repair
        • Communication and Collaboration
      • By Geography (Value)
        • North America
        • Europe
        • Asia Pacific
        • Middle East and Africa
        • Latin America

Continued…!!!

Request for Customization: https://www.fortunebusinessinsights.com/enquiry/customization/virtual-reality-vr-in-manufacturing-industry-101714

(Have a Look at Reports Trending in Information & Technology Industry)

Browse Related Reports:

Virtual Reality in Automotive Market Size, Share & Industry Analysis, By Component (Hardware, Software, Content), By Application (Designing and Prototyping, Training, Virtual Reality Showrooms, and Research and Development), and Regional Forecast, 2019-2026

Virtual Reality in Aerospace and Defense Market Size, Share & Industry Analysis, By Component (Hardware, Software, and Content), By Application (Training, Maintenance Assistance, Design and Manufacturing, Passengers Entertainment), and Regional Forecast, 2019-2026

Virtual Reality in Education Market Size, Share & Industry Analysis, By Component (Hardware, Software, Content), By Application (K-12, Higher Education, and Vocational Training), and Regional Forecast, 2019-2026

Virtual Reality in Gaming and Entertainment Market Size, Share & Industry Analysis, By Component (Hardware, Software, and Content), By Device (Mobile, Console/PC, and Standalone), and Regional Forecast, 2019-2026

Virtual Reality (VR) in Healthcare Market Size, Share & Industry Analysis, By Component (Hardware, Software, and Content), By Application (Pain Management, Education and Training, Surgery, Patient Care Management, Rehabilitation and Therapy Procedures and Post-Traumatic Stress Disorder (PTSD)), and Regional Forecast, 2019-2026

Internet of Things (IoT) in Manufacturing Market Size, Share & Industry Analysis, By Platform (Device Management, Application Management, Network Management), By Software & Services (Software Solution and Services), By Application (Predictive Maintenance, Asset Tracking and Management, Logistics and Supply Chain Management, Real-Time Workforce Tracking and Management, Emergency and Incident Management and Others) and Regional Forecast, 2019-2026

 

SOURCE Fortune Business Insights

Wladimir P. is a Content Editor at European Gaming Media and at PICANTE Media and covers a large variety of industries.

Artificial Intelligence

IBM, Government of Canada, Government of Quebec Sign Agreements to Strengthen Canada’s Semiconductor Industry

Published

on

ibm,-government-of-canada,-government-of-quebec-sign-agreements-to-strengthen-canada’s-semiconductor-industry

Up to $187M CAD to be invested to progress expansion of chip packaging capacity and capabilities and to strengthen R&D at IBM Canada’s Bromont plant
BROMONT, QC, April 26, 2024 /PRNewswire/ — IBM (NYSE: IBM), the Government of Canada, and the Government of Quebec today announced agreements that will strengthen Canada’s semiconductor industry, and further develop the assembly, testing and packaging (ATP) capabilities for semiconductor modules to be used across a wide range of applications including telecommunications, high performance computing, automotive, aerospace & defence, computer networks, and generative AI, at IBM Canada’s plant in Bromont, Quebec. The agreements reflect a combined investment valued at approximately $187M CAD.

“Today’s announcement is a massive win for Canada and our dynamic tech sector. It will create high-paying jobs, invest in innovation, strengthen supply chains, and help make sure the most advanced technologies are Canadian-made. Semiconductors power the world, and we’re putting Canada at the forefront of that opportunity,” said the Right Honourable Justin Trudeau, Prime Minister of Canada
In addition to the advancement of packaging capabilities, IBM will be conducting R&D to develop methods for scalable manufacturing and other advanced assembly processes to support the packaging of different chip technologies, to further Canada’s role in the North American semiconductor supply chain and expand and anchor Canada’s capabilities in advanced packaging.
The agreements also allow for collaborations with small and medium-sized Canadian-based enterprises with the intent of fostering the development of a semiconductor ecosystem, now and into the future.
“IBM has long been a leader in semiconductor research and development, pioneering breakthroughs to meet tomorrow’s challenges. With the demand for compute surging in the age of AI, advanced packaging and chiplet technology is becoming critical for the acceleration of AI workloads,” said Darío Gil, IBM Senior Vice President and Director of Research. “As one of the largest chip assembly and testing facilities in North America, IBM’s Bromont facility will play a central role in this future. We are proud to be working with the governments of Canada and Quebec toward those goals and to build a stronger and more balanced semiconductor ecosystem in North America and beyond.”
IBM Canada’s Bromont plant is one of North America’s largest chip assembly and testing facilities, having operated in the region for 52 years. Today, the facility transforms advanced semiconductor components into state-of-the-art microelectronic solutions, playing a key role in IBM’s semiconductor R&D leadership alongside IBM’s facilities at the Albany NanoTech Complex and throughout New York’s Hudson Valley. These agreements will help to further establish a corridor of semiconductor innovation from New York to Bromont. 
“Advanced packaging is a crucial component of the semiconductor industry, and IBM Canada’s Bromont plant has led the world in this process for decades,” said Deb Pimentel, president of IBM Canada. “Building upon IBM’s 107-year legacy of technology innovation and R&D in Canada, the Canadian semiconductor industry will now become even stronger, allowing for robust supply chains and giving Canadians steady access to even more innovative technologies and products. This announcement represents just one more example of IBM’s leadership and commitment to the country’s technology and business landscape.”
Chip packaging, the process of connecting integrated circuits on a chip or circuit board, has become more complex as electronic devices have shrunk and the components of chips themselves get smaller and smaller. IBM announced the world’s first 2 nanometer chip technology in 2021 and, as the semiconductor industry moves towards new methods of chip construction, advances in packaging will grow in importance. 
“Semiconductors are part of our everyday life. They are in our phones, our cars, and our appliances. Through this investment, we are supporting Canadian innovators, creating good jobs, and solidifying Canada’s semiconductor industry to build a stronger economy. Canada is set to play a larger role in the global semiconductor industry thanks to projects like the one we are announcing today. Because, when we invest in semiconductor and quantum technologies, we invest in economic security.”  — The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry
“This investment by IBM in Bromont will ensure that Quebec continues to stand out in the field of microelectronics. An increase in production capacity will solidify Quebec’s position in the strategic microelectronics sector in North America.” — The Honourable Pierre Fitzgibbon, Minister of Economy, Innovation and Energy, Minister responsible for Regional Economic Development and Minister responsible for the Metropolis and the Montreal region
About IBMIBM is a leading provider of global hybrid cloud and AI, and consulting expertise. We help clients in more than 175 countries capitalize on insights from their data, streamline business processes, reduce costs and gain the competitive edge in their industries. More than 4,000 government and corporate entities in critical infrastructure areas such as financial services, telecommunications and healthcare rely on IBM’s hybrid cloud platform and Red Hat OpenShift to affect their digital transformations quickly, efficiently and securely. IBM’s breakthrough innovations in semiconductors, AI, quantum computing, industry-specific cloud solutions and consulting deliver open and flexible options to our clients. All of this is backed by IBM’s legendary commitment to trust, transparency, responsibility, inclusivity and service. Visit www.ibm.com for more information. 
Media ContactLorraine BaldwinIBM [email protected] 
Willa HahnIBM [email protected]
Photo – https://mma.prnewswire.com/media/2397908/IBM_Canada_employee_at_the_IBM_Bromont_plant_holding_a_wafer.jpg
Logo – https://mma.prnewswire.com/media/95470/ibm_logo.jpg

View original content:https://www.prnewswire.co.uk/news-releases/ibm-government-of-canada-government-of-quebec-sign-agreements-to-strengthen-canadas-semiconductor-industry-302128212.html

Continue Reading

Artificial Intelligence

HITACHI ACQUIRES MA MICRO AUTOMATION OF GERMANY IN EFFORT TO ACCELERATE GLOBAL EXPANSION OF ROBOTIC SI BUSINESS IN THE MEDICAL AND OTHER FIELDS

Published

on

hitachi-acquires-ma-micro-automation-of-germany-in-effort-to-accelerate-global-expansion-of-robotic-si-business-in-the-medical-and-other-fields

HOLLAND, Mich., April 26, 2024 /PRNewswire/ — Hitachi Ltd. (TSE: 6501, “Hitachi”) has signed a stock purchase agreement on April 26 to acquire all shares of MA micro automation GmbH (“MA micro automation”, headquartered in St. Leon-Rot, Germany) from MAX Management GmbH (a subsidiary of MAX Automation SE). MA micro automation is a leading provider of robotic and automation technology (robotic SI) including high-speed linear handling systems, high-precision assembly lines, and high-speed vision inspection technology for Europe, North America, and Southeast Asia, for EUR 71.5M million. The transaction is expected to close in the second half of 2024, pending completion of the customary regulatory filings. After the acquisition is completed, MA micro automation will join JR Automation Technologies, LLC (“JR Automation”), a market leader in providing advanced automation solutions and digital technologies in the robotic system integration business for North America, Europe, and Southeast Asia as a continued effort to expand the company’s global presence.

MA micro automation is a technology leader for automation solutions within micro-assembly. Through its state-of-the-art proprietary high-speed and high-precision automation know-how, combined with unique optical image inspection capabilities, MA micro automation serves high-growth med-tech automation end-markets, covering the production, assembly, and testing medical and optical components including contact lenses, IVD and diabetes diagnostics consumables, and injection molding for medical use. The company was established in 2003 through a carve-out from Siemens*1 and since 2013 has been part of the MAX Automation group. 
JR Automation is a leading provider of intelligent automated manufacturing technology solutions, serving customers across the globe in a variety of industries including automotive, life sciences, e-mobility, consumer and industrial products. With over 20 locations between North America, Europe, and Southeast Asia, the leading integrator offers nearly 2 million square feet (185,806 sq. m) of available build and engineering floorspace. This acquisition allows JR Automation to further grow and strengthen both the company’s geographical footprint and their continued commitment on expanding support capabilities within the European region and medical market vertical.
“MA micro automation provides engineering, build and support expertise with established capabilities in complex vision applications, high-speed and high-precision automation technologies. When integrated with JR Automation’s uniform global process and digital technologies, this partnership will further enhance our ability to deliver added value and support to all of our customers worldwide and continue to grow our capabilities in the medical market,” says Dave DeGraaf, CEO of JR Automation. “As we integrate this new dimension, impressive talents and abilities of the MA micro automation team we further enhance our ability to serve our customers, creating a more robust and globally balanced offering.”
With this acquisition, Hitachi aims to further enhance its ability to provide a “Total Seamless Solution*2” to connect manufacturer’s factory floors seamlessly and digitally with their front office data, allowing them to achieve total optimization and bringing Industry 4.0 to life. This “Total Seamless Solution” strategy links organizations’ operational activities such as engineering, supply chain, and purchasing to the plant floor and allows for real time, data-driven decision-making that improves the overall business value for customers.
Kazunobu Morita, Vice President and Executive Officer, CEO of Industrial Digital Business Unit, Hitachi, Ltd. says, “We are very pleased to welcome MA micro automation to the Hitachi Group. The team is based in Europe, providing robotic SI to global medical device manufacturing customers with its high technological capabilities and will join forces with JR Automation and Hitachi Automation to strengthen our global competitiveness. Hitachi aims to enhance its ability to provide value to customers and grow alongside them by leveraging its strengths in both OT, IT, including robotic SI, and “Total Seamless Solution” through Lumada*3’s customer co-creation framework.”
Joachim Hardt, CEO MA micro automation GmbH says, “Following the successful establishment and growth of MA micro automation within the attractive automation market for medical technology products, we are now opening a new chapter. Our partnership with Hitachi will not only strengthen our global competitive position, but we will also benefit from joint technological synergies and a global market presence.  We look forward to a synergistic partnership with Hitachi and JR Automation.”
Outline of MA micro automation    
Name
MA micro automation GmbH
Head Office
St. Leon-Rot, Germany
Representative
Joachim Hardt (CEO)
Outline of Business
Automation solutions within micro-assembly
Total no. of Employees:
Approx. 200 (As of April 2024)
Founded
2003
Revenues (2023)
€ 46.5 million
Website

Home


*1
“Siemens” is a registered trademark or trademark of Siemens Trademark GmbH & Co. KG in the U.S. and other countries.
*2
“Total Seamless Solution” is a registered trademark of Hitachi, Ltd. in the U.S. and Japan.
*3
Lumada: A collective term for solutions, services and technologies based on Hitachi’s advanced digital technologies for creating value from customers’ data accelerating digital innovation. https://www.hitachi.com/products/it/lumada/global/en/index.html
About JR AutomationEstablished in 1980, JR Automation is a leading provider of intelligent automated manufacturing technology solutions that solve customers’ key operational and productivity challenges. JR Automation serves customers across the globe in a variety of industries, including automotive, life sciences, aerospace, and more.  
In 2019, JR Automation was acquired by Hitachi, Ltd. In a strategic effort towards offering a seamless connection between the physical and cyber space for industrial manufacturers and distributers worldwide. With this partnership, JR Automation provides customers a unique, single-source solution for complete integration of their physical assets and data information, offering greater speed, flexibility, and efficiencies towards achieving their Industry 4.0 visions. JR Automation employs over 2,000 people at 21 manufacturing facilities in North America, Europe, and Asia.  For more information, please visit www.jrautomation.com.   
About Hitachi, Ltd.Hitachi drives Social Innovation Business, creating a sustainable society through the use of data and technology. We solve customers’ and society’s challenges with Lumada solutions leveraging IT, OT (Operational Technology) and products. Hitachi operates under the 3 business sectors of “Digital Systems & Services” – supporting our customers’ digital transformation; “Green Energy & Mobility” – contributing to a decarbonized society through energy and railway systems, and “Connective Industries” – connecting products through digital technology to provide solutions in various industries. Driven by Digital, Green, and Innovation, we aim for growth through co-creation with our customers. The company’s revenues as 3 sectors for fiscal year 2023 (ended March 31, 2024) totaled 8,564.3 billion yen, with 573 consolidated subsidiaries and approximately 270,000 employees worldwide. For more information on Hitachi, please visit the company’s website at https://www.hitachi.com.
Photo – https://mma.prnewswire.com/media/2398552/CENTAURI_IVD_Platform.jpg Logo – https://mma.prnewswire.com/media/2392427/4673549/JR_Automation_and_Hitachi_Combined_Mark_full_color_Logo.jpg
 

View original content:https://www.prnewswire.co.uk/news-releases/hitachi-acquires-ma-micro-automation-of-germany-in-effort-to-accelerate-global-expansion-of-robotic-si-business-in-the-medical-and-other-fields-302128612.html

Continue Reading

Artificial Intelligence

$10 million Artificial Intelligence Mathematical Olympiad Prize appoints further advisory committee members

Published

on

$10-million-artificial-intelligence-mathematical-olympiad-prize-appoints-further-advisory-committee-members

D. Sculley, Kevin Buzzard, Leo de Moura, Lester Mackey and Peter J. Liu appointed to the advisory committee for the Artificial Intelligence Mathematical Olympiad Prize.
LONDON, April 26, 2024 /PRNewswire/ — XTX Markets’ newly created Artificial Intelligence Mathematical Olympiad Prize (‘AIMO Prize’) is a $10mn challenge fund designed to spur the creation of a publicly shared AI model capable of winning a gold medal in the International Mathematical Olympiad (IMO).

XTX Markets is delighted to announce the appointment of five further advisory committee members. This group brings great expertise in machine learning, including D. Sculley, the CEO of Kaggle; Lester Mackey, a Principal Researcher at Microsoft Research and a Macarthur Fellow; and Peter J. Liu, a research scientist at Google DeepMind.
Prolific mathematicians Kevin Buzzard, who achieved a perfect score in the International Mathematical Olympiad, and Leo De Moura who is the Chief Architect for Lean, the automated reasoning tool, also join the advisory group.
They join the existing advisory committee members Terence Tao and Timothy Gowers, both winners of the Fields Medal, as well as Dan Roberts, Geoff Smith and Po-Shen Loh.
The AIMO Advisory Committee will support the development of the AIMO Prize, including advising on appropriate protocols and technical aspects, and designing the various competitions and prizes.
Simon Coyle, Head of Philanthropy at XTX Markets, commented:
“We are thrilled to complete the AIMO Advisory Committee with the appointments of D., Kevin, Leo, Lester and Peter. Together, they have enormous experience in machine learning and automated reasoning and are already bringing expertise and wisdom to the AIMO Prize. We look forward to announcing the winners of the AIMO’s first Progress Prize soon, and then publicly sharing the AI models to support the open and collaborative development of AI.”
Further information on the AIMO Prize
There will be a grand prize of $5mn for the first publicly shared AI model to enter an AIMO approved competition and perform at a standard equivalent to a gold medal in the IMO. There will also be a series of progress prizes, totalling up to $5mn, for publicly shared AI models that achieve key milestones towards the grand prize.
The first AIMO approved competition opened to participants in April 2024 on the Kaggle competition platform. The first progress prize focuses on problems pitched at junior and high-school level maths competitions. There is a total prize pot of $1.048m for the first progress prize, of which at least $254k will be awarded in July 2024, There will be a presentation of progress held in Bath, England in July 2024, as part of the 65th IMO.
For more information on the AIMO Prize visit: https://aimoprize.com/ or the competition page on Kaggle: https://www.kaggle.com/competitions/ai-mathematical-olympiad-prize/
Advisory Committee member profiles:
D. Sculley
D. is the CEO at Kaggle. Prior to joining Kaggle, he was a director at Google Brain, leading research teams working on robust, responsible, reliable and efficient ML and AI. In his career in ML, he has worked on nearly every aspect of machine learning, and has led both product and research teams including those on some of the most challenging business problems. Some of his well-known work involves ML technical debt, ML education, ML robustness, production-critical ML, and ML for scientific applications such as protein design.
Kevin Buzzard
Kevin a professor of pure mathematics at Imperial College London, specialising in algebraic number theory. As well as his research and teaching, he has a wide range of interests, including being Deputy Head of Pure Mathematics, Co-Director of a CDT and the department’s outreach champion. He is currently focusing on formal proof verification, including being an active participant in the Lean community. From October 2024, he will be leading a project to formalise a 21st century proof of Fermat’s Last Theorem. Before joining Imperial, some 20 years ago, he was a Junior Research Fellow at the University of Cambridge, where he had previously been named ‘Senior Wrangler’ (the highest scoring undergraduate mathematician). He was also a participant in the International Mathematical Olympiad, winning gold with a perfect score in 1987. He has been a visitor at the IAS in Princeton, a visiting lecturer at Harvard, has won several prizes both for research and teaching, and has given lectures all over the world.
Leo de Moura
Leo is a Senior Principal Applied Scientist in the Automated Reasoning Group at AWS. In his spare time, he dedicates himself to serving as the Chief Architect of the Lean FRO, a non-profit organization that he proudly co-founded alongside Sebastian Ullrich. He is also honoured to hold a position on the Board of Directors at the Lean FRO, where he actively contributes to its growth and development. Before joining AWS in 2023, he was a Senior Principal Researcher in the RiSE group at Microsoft Research, where he worked for 17 years starting in 2006. Prior to that, he worked as a Computer Scientist at SRI International. His research areas are automated reasoning, theorem proving, decision procedures, SAT and SMT. He is the main architect of several automated reasoning tools: Lean, Z3, Yices 1.0 and SAL. Leo’s work in automated reasoning has been acknowledged with a series of prestigious awards, including the CAV, Haifa, and Herbrand awards, as well as the Programming Languages Software Award by the ACM. Leo’s work has also been reported in the New York Times and many popular science magazines such as Wired, Quanta, and Nature News.
Lester Mackey
Lester Mackey is a Principal Researcher at Microsoft Research, where he develops machine learning methods, models, and theory for large-scale learning tasks driven by applications from climate forecasting, healthcare, and the social good. Lester moved to Microsoft from Stanford University, where he was an assistant professor of Statistics and, by courtesy, of Computer Science. He earned his PhD in Computer Science and MA in Statistics from UC Berkeley and his BSE in Computer Science from Princeton University. He co-organized the second place team in the Netflix Prize competition for collaborative filtering; won the Prize4Life ALS disease progression prediction challenge; won prizes for temperature and precipitation forecasting in the yearlong real-time Subseasonal Climate Forecast Rodeo; and received best paper, outstanding paper, and best student paper awards from the ACM Conference on Programming Language Design and Implementation, the Conference on Neural Information Processing Systems, and the International Conference on Machine Learning. He is a 2023 MacArthur Fellow, a Fellow of the Institute of Mathematical Statistics, an elected member of the COPSS Leadership Academy, and the recipient of the 2023 Ethel Newbold Prize.
Peter J. Liu
Peter J. Liu is a Research Scientist at Google DeepMind in the San Francisco Bay area, doing machine learning research with a specialisation in language models since 2015 starting in the Google Brain team. He has published and served as area chair in top machine learning and NLP conferences such as ICLR, ICML, NEURIPS, ACL and EMNLP. He also has extensive production experience, including launching the first deep learning model for Gmail Anti-Spam, and using neural network models to detect financial fraud for top banks. He has degrees in Mathematics and Computer Science from the University of Toronto.
About XTX Markets:
XTX Markets is a leading financial technology firm which partners with counterparties, exchanges and e-trading venues globally to provide liquidity in the Equity, FX, Fixed Income and Commodity markets. XTX has over 200 employees based in London, Paris, New York, Mumbai, Yerevan and Singapore. XTX is consistently a top 5 liquidity provider globally in FX (Euromoney 2018-present) and is also the largest European equities (systematic internaliser) liquidity provider (Rosenblatt FY: 2020-2023).
The company’s corporate philanthropy focuses on STEM education and maximum impact giving (alongside an employee matching programme). Since 2017, XTX has donated over £100mn to charities and good causes, establishing it as a major donor in the UK and globally.
In a changing world XTX Markets is at the forefront of making financial markets fairer and more efficient for all.
 

View original content:https://www.prnewswire.co.uk/news-releases/10-million-artificial-intelligence-mathematical-olympiad-prize-appoints-further-advisory-committee-members-302128542.html

Continue Reading

Trending